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1. THEORETICAL BACKGROUND  

1.1. Introduction  

The concept of digitizing everything is becoming a reality in various fields including manufacturing 

and logistics. Automation of manufacturing and logistics operations and processes, application of 

artificial intelligence and machine learning, the appearance of the Internet of Things (IoT), and other 

advanced technologies, like digital twinning offer a wide range of applicable tools and solutions. 

Also, industrial revolutions are the transitions of the manufacturing process and have fundamentally 

changed the economy and society. The phrase 'Industrial Revolution' symbolizes a significant 

industrial leap. This means the increase of quality, quantity, or both by implementing innovative 

industrial methods via new tools and technologies [1]. Until recently, three industrial revolutions were 

identified. We are now amid the Fourth Industrial Revolution, briefly called ''Industry 4.0'', which is 

now being developed and dominated by the different industrial sectors comprehensively [2]. While 

the Fifth Industrial Revolution (Industry 5.0) is mentioned [3], especially in central European 

countries, Industry 4.0 is dominating the industrial areas. The most prominent feature of Industry 4.0 

is the adoption of intelligent technologies that rely on the IoT and remove the lines that separate the 

physical, digital, and biological areas [4]. Industry 4.0 applications include the most recent 

technology, especially in telecommunications, the internet, and nanotechnology, which allow us to 

use small devices with great efficiency [4,5]. This combination of advanced technologies has given 

us the scope to obtain various applications that have revolutionized the world of industry and changed 

the traditional concept of communication between machine and human into having the concept of 

communication between machine and machine [6]. It is easy to observe the rapid pace of development 

of the industry, which makes it imperative for us to follow up on the new applications of Industry 4.0 

eagerly so we can keep abreast of this development and benefit from it in our field of specialization. 

These applications have moved the logistics field to a new level [7]. The pace of industrial 

development is constantly increasing. The results of the technological revolution that we are living, 

in addition to the intelligent technologies built on the internet and resulting from Industry 4.0 make 

it imperative to pursue these techniques in different fields from CAD modeling [8] to digital twinning 

solutions [9].  

This started with the first industrial revolution that set the stage for industrial production. The 

introduction of mechanical production facilities using steam occurred at the end of the eighteenth 

century. Entering the twentieth century, the second industrial revolution was based on electricity, in 

conjunction with mass production techniques and the introduction of conveyor belts. It popularized 

mass production and gradually gave rise to assembly lines. This, in turn, gave birth to industrial 

engineering [10]. The third industrial revolution was a digital revolution, characterized by the rise of 

computers and automation in industrial control. Throughout the last half of the twentieth century, 

widespread applications of electronics and information systems further automated production. This 

enabled different manufacturers to reprogram manufacturing equipment and restructure processes to 

perform different tasks in a short period. While mechanical/electrical/digital innovations triggered 

the prior industrial revolutions, Industry 4.0 was triggered by the advent of the internet and its 

facilitation of communication between machines and humans in the cyber-physical system (CPS). 

The benefits and opportunities that are anticipated to have with Industry 4.0 appear to be various. For 

instance, resulting in highly flexible mass production, real-time coordination and optimization of 
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value chains, reduction of complexity costs, or the emergence of entirely new services and business 

models [11]. 

Industry 4.0 technologies make it possible to build interconnected logistic solutions, where the 

objective of increasing efficiency, availability, reliability, and cost efficiency while decreasing energy 

consumption and economic footprint is targeted at the global level. Human activities are constantly 

changing and evolving in response to changes in technology, economics, industry, environment, and 

climate. These transformations pave the way for a modern era in the manufacturing industry, 

characterized by a shift towards organizing production processes based on technology and devices 

capable of independent communication throughout the value chain. These developed solutions entail 

organizing production processes around technology and devices capable of autonomous 

communication throughout the value chain. This involves the development of suitable information 

systems, physical infrastructure, and various logistics systems to meet future demands while 

leveraging newly developed technologies (Additive Manufacturing, Advanced Robotics, Artificial 

Intelligence, Autonomous Vehicles, Drones, IoT, etc.) that are contained under one umbrella, which 

is called Industry 4.0. As an outcome, there is a need for new paradigms of the way freight is moved, 

stored, realized, and supplied throughout the world. One of the proposed solutions is CPS, the concept 

of an open global logistics system, which completely redefines current supply chain configuration, 

value-creation patterns, and business models. This transformation encompasses the automation of 

manufacturing and logistics operations, incorporating artificial intelligence, machine learning, IoT, 

and other advanced technologies like digital twinning. These technological advancements offer a 

multitude of applicable tools and solutions. Industry 4.0 technologies facilitate the development of 

interconnected logistic solutions, focusing on enhancing efficiency, availability, reliability, and cost-

effectiveness, while concurrently reducing energy consumption and economic impact on a global 

scale.  

Based on a described logistics-oriented Industry 4.0 application model [11] (Figure 1), two 

dimensions were included. The first dimension is the supply chain which can be an autonomous and 

self-controlled logistics subsystem that interacts with each other like transport (via autonomous 

trucks), turnover handling (via trailer unloading or piece-picking robots), or order processing. The 

second dimension is the digital data value chain. Machine and sensor data are collected at the physical 

level along the entire physical end-to-end supply chain. Through a connectivity layer, the gathered 

data is provided for any kind of analytics, possibly resulting in potential value-added business 

services. 

 

Figure 1: A logistics-oriented Industry 4.0 application model [11] 



 THEORETICAL BACKGROUND 

3 

As an aspect of the logistics in the waste area, nowadays, about 54% of the world’s population lives 

in urban areas. This proportion is expected to increase to 66% by 2050 [12]. This intensive increase 

in the world’s population results in increased waste production. The waste management systems can 

be divided into two main parts: the technological part and logistics. There is a wide range of waste 

treatment technologies, including anaerobic digestion, gasification [13], dumping, land farming, 

composting, pyrolysis [14], sewage treatment [15], incineration [16], and reuse, but some of them 

have a huge environmental impact and they can cause serious environmental pollution [17]. Taking 

the benefits of Industry 4.0 technologies to make it possible to transfer conventional manufacturing 

and service systems into CPSs with remote management. 

1.2. Applied methodology in literature  

It is crucial to describe the main scientific results so far, identify the main tackled topics, and define 

the scientific gaps in the aimed research area to start drawing the main research directions and create 

a valuable scientific contribution. For that, a combined approach of two ways was used in this 

dissertation to create an inclusive literature review. While a systematic literature review that is based 

on defined steps [18] was used to cover a full-time span with analysis tools, a personal search for the 

related research articles was added to make the literature more inclusive. The outcomes and found 

scientific gaps are discussed at the end of this chapter. Moreover, as this dissertation investigates 

more than one direction, further specified literature is to be discussed in each chapter when it is 

needed.  

Regarding the applied systematic literature review, the following points were used [18]. 1. Defining 

the research terms (keywords) to use. 2. Selecting which sources of data to be used in the search. 3. 

Analyzing the resulting articles. 4. Describing the main scientific results, identifying the main topics, 

and defining the scientific gaps and bottlenecks. 

The keywords, which were identified to cover this research area are “Industry 4.0” and “logistic 

systems”. To have a better perspective of the existing data, diverse ways of searching were applied 

with these keywords. The results of these ways will briefly be listed before giving details for the 

selected way. The entire search was done within the Web of Science database, and it was conducted 

in October 2023; therefore, new articles may have been published since then. 

First, only TITLE: (“Industry 4.0”) was used. Initially, 3877 articles were identified. This list was 

reduced to 3424 articles by selecting English articles and review articles. The classification of these 

articles depending on the publishing year is elaborated in Figure 2. 

 

Figure 2: First search in the Web of Science database 
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In this search, the first article was in 2013. 2016 was the first year where more than two articles were 

published (14 articles). A gradual increase is obvious in the article numbers until it reached 882 

articles in 2022 and 538 articles in 2023 (still going). This reflects the growing interest in and 

importance of Industry 4.0 within the last few years. 

Second, only TITLE: (“logistic systems”) was used. Initially, 1682 articles were identified. This list 

was reduced to 1510 articles by selecting English articles and review articles. The classification of 

these articles depending on the publishing year is elaborated in Figure 3. The first year when these 

resulting articles were published was 1975. To simplify the figure, the published article totals were 

taken in groups until 2000. 

In this search, we can notice an increase in articles dealing with logistics over time. Even a few years 

are less than the previous ones but that does not change the total increase.  

 

Figure 3: Second search in the Web of Science database 

Third, TITLE: (“Industry 4.0”) and TOPIC: (“logistic systems”) were used together. Initially, 152 

articles were identified. This list was reduced to 149 articles by selecting English articles and review 

articles. The classification of these articles depending on the publishing year is elaborated in Figure 

4. The first articles in this result were published in 2017.  

 

Figure 4: Third search in the Web of Science database 
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Fourth, TOPIC: (“Industry 4.0”) and TITLE: (“logistic systems”) were used together. Initially, 23 

articles were identified. This list was reduced to 22 articles by selecting articles and reviewing articles. 

The classification of these articles depending on the publishing year is elaborated in Figure 5. The 

first article in this result was published in 2018.  

 

Figure 5: Fourth search in the Web of Science database 
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Figure 6: Sixth search in the Web of Science database 

After the six different searches, we can realize the mounting role of Industry 4.0, the importance of 

logistic systems in scientific research, and the increasing amount of research that combines them. For 

the next step, which is analyzing the articles, the sixth search was chosen that used both “Industry 

4.0” and “logistics” as a TOPIC. The eighty-nine articles that resulted from this search will be read, 

analyzed, and defined depending on the topic and type then making literature review for them to find 

out the research gaps and bottlenecks.  

1.3. Data analyzing 

The reached 468 articles were classified depending on the research area. Figure 7 shows the 

distribution of these articles while considering twenty subject areas. This distribution shows that most 

of the published articles are in engineering, economics, and computer sciences. Engineering and 

economics areas reflect the effect of these topics on the industry, while the computer sciences and 

operational research management areas define the importance of computational methods that are 

involved within Industry 4.0 research and applications. 

 

Figure 7: Distribution of articles by research area 
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By analyzing the published articles from the Web of Science categories point of view and by choosing 

the biggest twenty categories, Figure 8, it is found the most common categories are within engineering 

areas in both manufacturing and industry then in management, operation research, and computer 

science next to other areas like environment and automation. These categories variety show the 

importance of Industry 4.0 in logistics and its effect on various aspects of sciences. Figure 6 elaborates 

this effect has been increasing rapidly during the last few years.  

 

Figure 8: Distribution of articles by categories 

As citation reflects the strong impact of the research, the highest five cited articles in the found search 

are highlighted [11] [21] [22] [23] [24]. Figure 9 shows them with their number of citations. 

 

Figure 9: Five most cited articles in the found search Science  
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1.4. Systemic literature review 

After reviewing the selected articles and excluding the irrelevant ones, a systematic literature review 

is presented. The second article in the previous search results was published in 2016 [25] titled 

“Industry 4.0 Implies Lean Manufacturing: Research Activities in Industry 4.0 Function as Enablers 

for Lean Manufacturing”. This paper analyzed the incompletely perceived link between Industry 4.0 

and lean manufacturing and investigated whether Industry 4.0 can implement lean manufacturing. It 

provided an insight into manufacturers' dilemma as to whether they could commit to Industry 4.0 

considering the investment required and unperceived benefits. In 2016, Kovacs et al [26] introduced 

the logistical tendencies and challenges with reasons and driving forces. Tendencies in the changes 

of customer demands, production requirements, formation of supply chains, inventory strategies, 

transportation activities, and activity of the logistics service sector are analyzed. The Industry 4.0 

concept was also introduced, which was considered that would change the production and logistical 

processes drastically. Prause [27] addressed his research with the question of how the e-residency 

concept might facilitate the development and implementation of Industry 4.0 and how entrepreneurs 

may benefit more from new Industry 4.0-related business models by using the e-residency platform 

of Estonia. Weinberger et al [28] introduced the concept of high-resolution management where IoT 

enables the collection of high-resolution data for the physical world where, as in the digital world, 

every aspect of business operations can be measured in real-time. The capability facilitates high-

resolution management, such as short optimization cycles in industrial production, logistics, and 

equipment efficiency, comparable to methods like A/B-testing or search engine optimization, which 

are state-of-the-art in digital business. Jurenoks [29] described the modification of network routing 

protocols for energy balancing in nodes, using the mobility of the coordinator node, which provided 

dynamic network reconfiguration possibilities. Trappey et al [30] concentrated on examining 

technology roadmaps for the integration of IoT technologies within smart logistic services. Case 

studies were conducted to pinpoint the correlation between IoT-centric technologies and the 

implementation of advanced logistic services. Logistic operations were categorized into an ontology 

schema based on a four-tier service framework. The study proposed a roadmap approach to visualize 

the allocation and evolution of patents corresponding to logistic services across each tier. Utilizing 

the roadmap methodology, the study analyzed IoT-enabled smart logistics to discern technology-

related business strengths and strategies. Choi et al [31] investigated issues of a CPS application in 

manufacturing enterprises and introduced a CPS development case based on the IoT platform. 

Erkollar et al [32] investigated the deployment of novel logistics and smart city applications within 

the EU, along with a detailed discussion of their developed methodology. A model was devised to 

determine the optimal method for application implementation, taking into account time and cost 

limitations. Chaberek-Karwacka [33] Chaberek-Karwacka focused on addressing how newly adopted 

information technologies in logistics processes influence the dynamics of resource mobility in urban 

environments, and how they contribute to alleviating congestion issues. The study's primary premise 

was that information flows could partly substitute physical flows, leading to the central thesis that 

modern technologies facilitating streamlined information exchanges in both business-to-business and 

business-to-consumer interactions can mitigate the demand for goods and human movement within 

cities. The optimization resulted in shifts in the structure of resource demand and consequently altered 

the requirements for their mobility. Szozda [34] utilized findings from social research where a survey 

was conducted among 122 supply chains employing applied research techniques. From the gathered 

data and research findings, it could be inferred that the concept of Industry 4.0 is familiar to modern 

enterprises and significantly impacts the structuring of both physical and information flows within 

supply chains. Managers demonstrated awareness of the evolving nature of production, procurement, 

and distribution processes throughout the supply chain. Chen et al [35] reviewed the current practices 

of ubiquitous manufacturing, discussed the challenges faced by researchers and practitioners, and 

determined potential opportunities. It concluded that the success of ubiquitous manufacturing 

depends on the quality of the manufacturing services deployed and that ubiquitous manufacturing is 
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a realizable target for Industry 4.0. Prause et al [36] investigated the relationship between networking, 

organizational development, structural frame conditions, and sustainability in the context of Industry 

4.0. The research was empirically validated by using data samples from a business-reengineering 

project in an internationally operating high-tech manufacturing enterprise located in Estonia. The 

empiric analysis was based on semi-structured expert interviews and secondary data together with a 

case study approach. Hofmann et al [11] worked on discussing the opportunities of Industry 4.0 in 

the context of logistics management since implications were expected in this field. The aim was to 

explore the relatively new and underexplored domain of Industry 4.0 within the realm of logistics 

management, employing a conceptual research methodology. Initially, a model focusing on Industry 

4.0 applications in logistics, along with its fundamental components, was introduced. Various 

logistics scenarios were then examined to elucidate potential practical implications and were 

deliberated upon with input from industry experts. The study revealed opportunities in terms of 

decentralization, self-regulation, and efficiency. Strandhagen et al [37] aimed to pinpoint and examine 

Industry 4.0 technologies relevant to manufacturing logistics, while also exploring how the 

manufacturing environment influences the adoption of these technologies. This was accomplished 

through a case study involving four Norwegian manufacturing firms. The study's outcomes revealed 

that the feasibility of integrating Industry 4.0 into manufacturing logistics hinged upon the specific 

production environment. Companies characterized by low production repetitiveness exhibited less 

enthusiasm for applying Industry 4.0 technologies in manufacturing logistics, whereas those with 

highly repetitive production processes displayed a greater propensity for adoption. Strandhagen et al 

[38] presented what so-called Logistics 4.0 is, highlighting its key components such as instantaneous 

data exchange, automated processes, and real-time big data analysis, which serve as catalysts for 

emerging business models. Additionally, presented a model aimed at comprehending and 

interconnecting various facets of business operations. Karia [39] investigated the role of knowledge 

resources as a crucial factor in the relationship between technology resources and the competitive 

advantage of logistics service providers. Survey data of 122 logistics service providers in Malaysia 

was used to analyze the proposed relationship. The results confirmed that knowledge resources 

positively affected cost advantages and significantly mediated the relationship between technology 

resources and cost advantages. Banyai et al [40] proposed an integrated delivery supply model. A 

mathematical model was introduced to formulate the problem of real-time smart scheduling of 

delivery. The integrated model included the assignment of first mile and last mile delivery tasks to 

the available resources and the optimization of operations costs, while constraints like capacity, time 

window, and availability were taken into consideration. A black hole optimization-based algorithm 

dealing with a multi-objective supply chain model was presented. The sensitivity of the enhanced 

algorithm was tested with benchmark functions. Numerical results with different datasets 

demonstrated the efficiency of the proposed model and validated the usage of Industry 4.0 inventions 

in delivery. Lee et al [41] proposed an IoT-based warehouse management system with an advanced 

data analytical approach using computational intelligence techniques to enable Industry 4.0 smart 

logistics. Based on the data collected from a company case study, the proposed IoT-based warehouse 

management system showed that the warehouse productivity, picking accuracy, and efficiency could 

be improved, and it was robust to order variability. Oeser et al [42] worked on finding a general 

holistic view of the implications of the growing and highly relevant customer segment of elder 

consumers for the food demand chain (food retail, production, logistics, and business informatics) in 

Germany. They also stated within their results that Industry 4.0 could facilitate the efficient and 

effective supply of food. Bressanelli et al [43] focused on the IoT, big data and analytics (BDA). 

Eight functionalities enabled by such technologies were identified (improving product design, 

attracting target customers, monitoring, and tracking product activity, providing technical support, 

providing preventive and predictive maintenance, optimizing the product usage, upgrading the 

product, enhancing renovation and end-of-life activities). By investigating how these functionalities 

affected three Circular Economy (CE) value drivers (increasing resource efficiency, extending 
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lifespan, and closing the loop), the conceptual framework was developed about the role of digital 

technologies as an enabler of the CE within usage-focused business models. This showed how digital 

technologies help to overcome the drawbacks of usage-focused business models for the adoption of 

CE. Banyai [44] described a real-time scheduling optimization model focusing on the energy 

efficiency of the operation by using Industry 4.0 technologies. A mathematical model of last-mile 

delivery problems was introduced including scheduling and assignment problems. The objective of 

the model was to determine the optimal assignment and scheduling for each order to minimize energy 

consumption, which allows for improved energy efficiency. Lin et al [45] investigated the deployment 

of an intelligent computing system consisting of a cloud center, gateways, fog devices, edge devices, 

and sensors attached to facilities in a logistics center. It used an integer programming model for 

deploying gateways, fog devices, and edge devices in their respective potential sites so that the total 

installation cost was minimized, under the constraints of maximal demand capacity, maximal latency 

time, coverage, and maximal capacity of devices. It also solved an NP-hard facility location problem 

by a metaheuristic algorithm that incorporates a discrete monkey algorithm to search for superior-

quality solutions and a genetic algorithm (GA) to increase computational efficiency. A simulation 

verified the high performance of the proposed algorithm in the deployment of intelligent computing 

systems in moderate-scale instances of intelligent logistics centers. Jabboure et al [22] contributed to 

unveiling how different Industry 4.0 technologies could underpin CE strategies and organizations by 

addressing those technologies as a basis for sustainable operations management decision-making. 

Gong et al [46] presented a simulation platform of automobile mixed flow assembly built based on 

Industry 4.0, which operated and managed automobile assembly, logistics warehouse, and CPS 

effectively. Flex Sim software was adopted to establish the auto-mixed assembly model that finds out 

the bottleneck of the auto-mixed assembly problem. Using parameter adjustment, rearrangement, and 

merger of processes, the whole assembly time of the 500 automobiles dropped by 33 hours, the 

equipment utilization rate increased by 20.19%, and the average blocked rate decreased by 21.19%. 

The optimized results showed that the proposed model could increase manufacturing efficiency by 

applying Industry 4.0 technologies. Sell et al [47] presented a concept for the integration of self-

driving vehicles into Industry 4.0 by a last-mile automated shuttle bus designed and built in Estonia 

for short-range transportation. Tsai [48] proposed a green activity-based costing production planning 

model under Industry 4.0. Three models with five possible scenarios were suggested: normal and 

material cost fluctuation, material cost discount, and carbon tax with the related cost function. The 

aluminum-alloy wheel industry was chosen as the illustrative industry to present the results. The 

model provided a way to deal with the cost problem under Industry 4.0 as well and to be able to 

handle the environmental issues in making production decisions. Banyai et al [17] introduced waste 

collection process of downtowns as a CPS. A mathematical model of that waste collection process 

was described, which incorporated routing, assignment, and scheduling problems. The objectives of 

the model were: (1) optimal assignment of waste sources to garbage trucks; (2) scheduling of the 

waste collection through routing of each garbage truck to minimize the total operation cost, increase 

reliability while comprehensive environmental indicators that have great impact on public health are 

to be taken into consideration. Moreover, a binary bat algorithm was described, whose performance 

was validated with different benchmark functions. Sicari et al [49] introduced a new flow-based 

programming tool for the IoT through a detailed case study focusing on smart transportation and 

logistics. Banyai et al [50] introduced a structure of matrix production as a CPS focusing on logistics 

aspects. A mathematical model of this in-plant supply process was described including extended and 

real-time optimization from routing, assignment, and scheduling points of view. The optimization 

problem described in the model was an NP-hard problem. Heuristics were used to find a suitable 

solution. Moreover, a sequential black hole-floral pollination heuristic algorithm was described. Liu 

et al [51] introduced architectural concepts and business model analyses for an innovative intelligent 

facial mask production model, comprising three modules: in-store service, intelligent logistics, and 

smart manufacturing. The in-store service module utilized artificial intelligence to enhance customer 
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experience. The intelligent logistics module employed CPS for cloud processing of traffic data, 

aiming to optimize the transport of facial mask products, reducing both time and costs. The entire 

process was characterized by high efficiency and full automation, offering customers personalized 

facial mask production and services. Neal et al [52] showed how returnable transit items can become 

an integral part of the Industry 4.0 vision as an intelligent container that can interact with components, 

machines, and other cyber-physical manufacturing services. It discussed a CPS reference architecture 

for the integration of intelligent containers and presented a hardware and software proof of concept 

solution suitable for industrial deployments. Lee et al [53] proposed a CPS model for the smart robotic 

warehouse to implement workflow data collection and procedure monitoring. A decoupled method 

was presented to find a conflict-free path for the mobile vehicles in the warehouses, after distributing 

destinations to mobile robots to minimize the total travel distance. Zhang et al [54] systematically 

analyzed the production management requirements of a large-scale production system in terms of 

both hardware (production equipment) and software (application system), which was oriented to 

dynamic production demands, and then proposed a production service system enabled by cloud-based 

smart resource hierarchy. Bougdira et al [55] introduced the main design features of traceability and 

its model in Industry 4.0. The study advocated that traceability should not only allow trace and 

tracking but also ensure product safety and quality. Accordingly, the proposal included an intelligent 

traceability description, ontology-based modeling, and a cloud-based application. Garrido-Hidalgo et 

al [56] proposed an end-to-end solution for reverse supply chain management based on cooperation 

between different IoT communication standards, enabling cloud-based inventory monitoring of 

electrical and electronic equipment waste through embedded sensors. A case study was deployed 

using IoT devices and sensors, carrying out a set of experimental tests focused on wireless 

communications to evaluate its performance. The network configuration adopted overcomes the near 

real-time challenge and provides sufficient coverage to interconnect industrial areas such as 

warehouses or shop floors. The results pointed to different communication bottlenecks that needed to 

be addressed to enhance the reliability of large-scale industrial IoT networks. Queiroz et al [57] 

identified seven basic capabilities that shape the digital supply chain framework and six main enabler 

technologies, derived from 13 propositions. The proposed framework could bring valuable insights 

for future research development. Garay-Rondero et al [58] presented a conceptual model that defines 

the essential components influencing the evolution of digital supply chains through the 

implementation and acceleration of Industry 4.0. This shows the diversity of disciplines that were 

affected by Industry 4.0 with a variety of applications that can be implemented and innovated. 

However, Industry 4.0 is still in continuous development and the opportunities of using its technology 

and applications are still a wide-open space. 
Moreover, a proposed model of the master production scheduling process of a group of small and 

medium enterprises was presented as a starting point toward digitalization to find a guide for the 

digital transformation of manufacturing in the medium-term production planning process [59]. It was 

identified that the Industry 4.0 technologies could improve medium-term planning and integrate them 

into a standardized master production schedule process model. Another article [60] presented a multi-

objective evolutionary approach based on decomposition for efficiently addressing the multi-

objective flow shop problem, which showed the competitiveness of the proposed approach compared 

with other baseline metaheuristics. Scheduling optimization within in-plant supplying was tackled 

within different aspects such as the graduation-inspired synchronization framework [61] that showed 

superiority compared to the others on average and displays minor variations in statistics regarding 

cost-efficiency, punctuality, and simultaneity measures, indicating that it was more effective, stable, 

and resilient in stochastic environments, or by a proposed system [62] that presented two-phased 

solution provided to improve the communication within data heterogeneous networks achieving 

maximum network throughput. Also, less delay was demonstrated by using a simulation that showed 

that digital twins and IoT devices could communicate seamlessly in Industry 4.0 networks. Also, 

smart manufacturing scheduling was identified to set up a conceptual and structured relationship 
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framework to raise the effectiveness of the scheduling process towards better flexibility, through 

enhanced rescheduling ability, and towards autonomous operation, mainly supported by the use of 

machine learning technology based on several reviewed contributions [63] from the Industry 4.0 

perspective or even Industry 5.0 solutions [3] that served as a starting point for research and 

development projects and algorithms' developments, which are needed in the field of multi-agent, 

multistage and inverse optimizations. Also, Industry 4.0 technologies were adopted into optimization 

models in another application where the new system and mathematical model were described and 

showed a big advantage. On the other side, a study showed that the benefit of using integrated real-

time in the designed models in the scheduling process depended on the proper choice of both the 

scheduling approach and the solution procedures, and in a few scenarios, this usage was even 

counterproductive [64], which encourages for further research regarding the design of approaches 

and solution procedures that allow fully exploiting the technological advances of Industry 4.0 for 

decision-making in scheduling.  

Among the production planning and scheduling, milk-run solution in the logistics field shows a 

possible approach to achieve more benefits and higher efficiency. This solution was tackled from 

various perspectives in the research field as it was found in literature. It was discussed as a tool to 

improve logistics flows processed next to lean production tools in a case study [65]. Among the 

mentioned conclusions, they reached that manufacturers could become more agile and increase 

customer service levels while reducing the cost of custom manufacturing by using a milk-run 

approach. In another study in Turkey [66], an optimization model was presented to minimize the 

transportation cost by minimizing the travel distance and maximizing vehicle capacities while it 

tackled a milk-run situation. It was also considered [67] as a solution to minimize carbon emissions 

and reduce the distribution cost of logistics enterprises, and it was described as a win-win situation 

for social and economic aspects. In another consideration for forward and reverse milk-run vehicle 

routing and scheduling, constraints imposed by an in-plant distribution network were modeled [68]. 

It was used to determine the number and time of transport trips, and the proposed model met the need 

for alternative and repeated formulation of successive forward and reverse decision problems. Also, 

in a German automotive component manufacturer [69], a milk-run solution was applied for the 

collected goods from several suppliers to be transported to an individual customer and the collected 

goods from a distinct supplier to be delivered to a diverse group of customers. It aimed for a probable 

opportunity to minimize the procurement cost of the raw materials because the number of trucks used 

for the transportation of goods was reduced, which reduced the operating cost by saving fuel and time 

which means increasing the company's profit margin by reducing production costs. 

Also, The city logistics area is a rich topic to tackle and research regarding its diverse 

implementations, especially during recent years because of the numerous innovations in both 

transportation and Industry 4.0 areas. Renewable energy evolutions in transport vehicles like e-cars 

create a wide scope to adopt them in the city logistics applications considering the relatively shorter 

distances in the city logistics area compared to the outside cities. Moreover, Industry 4.0 applications, 

which depend on the IoT and artificial intelligence support innovating smart solutions to shorten the 

required time and road distance while collecting and analyzing information at the same time, giving 

the capacity to examine them. On the other hand, sustainability is a critical topic that is represented 

in the Sustainable Development Goals such as the 11th goal "sustainable cities and communities" [70], 

which gives it a priority to be tackled in research. The investigation of reducing the spent power, 

emissions, and contamination aspects was advised to be researched for its positive influence on the 

climate and environment. Studying these novel solutions has significantly raised in many aspects 

showing the importance of applying them. Last-mile logistics is the latest stage of the supply chain, 

and it involves a particular share of the overall delivery cost and energy. Industry 4.0 applications 

allowed the possibility of reducing the time of the order execution within the real-time handling of 

open tasks in the package delivery service providers' network. Therefore, the last mile logistics 

optimization shows significant potential for researchers, and it creates a challenge for them [71]. 



 THEORETICAL BACKGROUND 

13 

Depending on the energy efficiency significance of last mile services that are represented by package 

delivery service providers, it is expressed that this research area is very valuable. The rising value of 

resources, cost, and power in supply chain applications and the purpose of detecting design and 

operation strategies enforced in real-time are strong motivations for researching this area [44]. Real-

time intelligent scheduling in the last mile delivery was also presented [40] as a developed 

methodological approach based on the Industry 4.0 applications. Depending on a systemic literature 

review [44] that was based on 231 articles, more attention and research were required in the last mile 

supply area, especially with considering the metaheuristic algorithms for the energy efficiency aspect. 

The GA was presented as an effective metaheuristic algorithm in many fields [72] such as operation 

management, scheduling, and inventory control. An important aspect of last mile transportation is RL 

that is one of its definitions is [73] “the process of planning, application, control of the operation, 

cost, and flow of raw materials, the inventory process, finished products, the information related, 

from the point of consumption to the point of origin, to recover or create value or proper disposal”. 

RL has distinct characteristics, for example, critical uncertainties of time, quality, and quantity supply 

next to the operations' complexities. A framework founded on the reverse stream of distribution 

starting from the producer until the user and backward to the producer was proposed [74]. It defined 

the motivation types mainly as the economic amount, governance legislation, and ecological image 

while disposal kinds were defined as reuse, repair, recycling, and re-manufacturing. Another 

framework for RL defined five directions: (1) return causes; (2) reception body; (3) product types and 

their characteristics; (4) recovery operations and settings, and (5) involved actors and their roles [S1]. 

To clarify the RL problems and develop solutions, modeling techniques were used [75], but the prime 

problem is the need for a high number of variables considered. In a study [76], five strategic operators 

were considered significant for the RL that are environmental concerns, quality, costs, customer 

service, and political/legal considerations. Also, RL was researched [77] within the composed 

framework of environmental operators (regulation and environment respect) and business operators 

(customer satisfaction and returns) [78]. However, a need for further research on the aspects of 

strategic and organizational frameworks of RL was confirmed [79], which includes integrating the 

RL in the designed supply system for instance. Considering RL for sustainability aspect was 

confirmed [S1] as one of the main factors in the city logistics area, particularly from an Industry 4.0 

technologies point of view. 

1.5. Theoretical background outcomes and aimed scientific gaps 

As a summary of the presented literature review, the following points are mentioned: 

• The number of articles regarding city logistics has dramatically increased in the last few years. 

Energy efficiency is becoming more and more important in the field of city logistics, while 

sustainability aspects are also taken into consideration. Multi-echelon solutions are expected to 

improve energy efficiency and sustainability of supply chains and city logistics. 

• Industry 4.0 technologies are expected to contribute directly to digitalization, full product life 

analysis, dynamic feedback, and other tools that could achieve more deep and inclusive analysis 

to reach higher optimization in the investigated systems. Also, last-mile transportation operations 

are a rich area to research considering its various applications and tools to be adopted especially 

considering the innovative Industry 4.0 technologies and applications.  

• The literature stated various applications of the developed Industry 4.0 technologies in the 

manufacturing and in-plant supply areas with a high potential of raising the efficiency of energy 

consumption. This reflects the grand expectations of achieving a positive impact through the 

adoption of these technologies.  

• Using metaheuristic optimization is considered an effective method to optimize the last-mile 

transportation processes. The GA showed strong optimization results in many areas including the 

logistics area. Also using the direct lines (not real) distances between the locations was a common 

way to be used in previous studies.   
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• While RL takes a primary share of the transportation applications in city logistics, it still requires 

more research to investigate its results and effects. Also, electric vehicles show promising leverage 

for raising energy efficiency. However, further research on this adoption and its effects is required 

to find out deep outcomes. 

• The articles that addressed the city logistics from a sustainable point of view focus on conventional 

supply chain solutions. Few of the articles have aimed to provide an approach or to optimize the 

design of logistics networks within urban areas while considering energy efficiency. 

• Waste management is considered a complex problem with direct and indirect impacts on various 

aspects such as transportation, environment, economy, social life, urban area planning, and waste 

treatment, which influence many stakeholders. Also, one of the promising solutions for raising 

sustainability in waste management is electric vehicles. However, various operational operators, 

such as limited capacity and distances alongside battery power, pose significant challenges in 

adopting this solution. 

• Waste management optimization research focused mainly on vehicle routing to minimize the total 

route distance, while energy efficiency and environmental aspects were less commonly tackled. 

This expresses a research gap to cover, especially with the various available Industry 4.0 tools. 

Additionally, most articles utilized the distance matrix to calculate the distances, which means that 

the results cannot be considered realistic. 

 

The identified research gaps to be covered include the following directions: 

1. While many studies worked on finding and presenting the benefits of Industry 4.0 

technologies in manufacturing and in-plant supply, further research focus and details are 

expected to be done. Especially, some studies showed contradictory results to what was 

expected with no clear/direct correlation. Therefore, presenting new models and modeling 

take a positive part in this direction. 

2. There is a need for designing and implementing comprehensive CPS based on Industry 4.0 

technologies in city logistics. Mainly in two specific areas. First, waste management system 

(collection). Second, last mile system (distribution). Also, combined systems that include RL 

as the applications of logistics systems in city logistics can vary widely. 

3. Creation and validation of mathematical modeling that describes and evaluates the logistic 

systems are needed. Further validation has special importance as well, and this can be done 

through numerical cases and/or real cases. 

4. In-plant logistic supply systems need further investigation regarding the Industry 4.0 

technologies adoption effect. Based on such investigation results, further implementation of 

a comprehensive system is needed to include effective Industry 4.0 technologies in this 

manner. 

5. A scientific gap regarding the actual impact of Industry 4.0 technologies on in-plant supply 

systems does exist, especially regarding real-time optimization. While the potential positive 

impact claimed to be shown, validating this impact was limited to specific situations without 

general studies that showed a full description of the system's structure and mathematical 

modeling. 

6. A scientific gap was found to identify the problem of functional integration for the 

Manufacturing Execution System (MES) data-based and real-time generated supply demands 

even though it showed the potential to decrease energy consumption and Greenhouse gases 

(GHG) emissions. 

7. The optimization algorithms witnessed extensive development until reaching the heuristic and 

meta-heuristic algorithms. However, this development needs deeper analysis and scrutiny.  

8. All the mentioned research gap directions are recommended to be analyzed in connection with 

their impact on sustainability and energy efficiency.
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2. OPTIMIZATION ALGORITHMS 

Optimization refers to finding the optimal value or best possible option with the given constraints. 

With optimization, resource utilization can be planned to be the most effective and cost-efficient, 

especially in the logistics sector where cost and time are both important factors. However, when 

dealing with complex systems, finding the best solution is considered almost impossible due to the 

time and resources consumed. Therefore, optimization algorithms are used to find an optimum 

solution as much as possible within a relatively short time. Optimization algorithms evolved from 

conventional mathematical approaches to modern developed methods that use heuristic and 

metaheuristic approaches. 

This chapter discusses the optimization algorithms development and differences as they take an 

essential role in solving complex problems. After an introduction that contains a brief literature 

review, four of the most used heuristic algorithms are presented in detail. Then, benchmark tests are 

used to compare their performances. The achieved results of this chapter were published mainly in 

three articles [S3, S4, S5]. 

2.1. Introduction  

As in life generally and in engineering especially, finding the optimum results is the target, and it is 

the goal in almost every application, particularly in problem-solving designs where it is attempted to 

reach the best value. For instance, minimizing energy consumption and cost or maximizing 

performance, profit, and efficiency. Time, resources, and money make essential limits for the vehicles 

and transportation area; therefore, optimization is fundamental to be applied in reality [80,81]. 

Therefore, the appropriate utilization of available assets of any kind requires a paradigm change in 

logical thinking and designing inventions. Mathematical optimization started with traditional 

approaches, for instance, linear programming, sequential quadratic programming, Newton-Raphson, 

interior-point methods, fractional programming, and LaGrange duality. Subsequently, modern 

approaches were invented that are mainly going to be evolutionary or bioinspired. Some examples of 

modern approaches contain evolutionary algorithms, swarm intelligence (SI), artificial neural 

networks, and cellular signaling pathways that are mainly classified as heuristic and metaheuristic 

algorithms. For instance, GA and SI are being used in many applications [82]. Nevertheless, the 

logistics area has different direct and indirect applications that aim to optimize target solutions in a 

short time, mainly by using modern digital technologies, such as CPSs and the IoT that are involved 

in the newly developed models and these applications gain ground in industrial transformation rapidly 

in the last few years [83]. Alongside Industry 4.0, other technologically founded industrial processes 

that aim to improve the industrial process are used, for instance, lean operations, six-sigma, CE, and 

other smart manufacturing tools and systems [S1]. Those tools and processes are addressed in the 

context of improving sustainable supply chains, including collaboration, transparency, flexibility, 

innovation, and capabilities [84]. Optimum results detection is the main objective in the vehicles 

sector, particularly in problem-solving designs where it is attempted to reach the best value, such as 

minimizing energy consumption and cost or maximizing the performance, profit, and efficiency [85]. 

Scientific research in the logistics area has complex and multi-objective cases that are defined as NP-

hardness (non-deterministic polynomial-time hardness). These cases are very hard or even impossible 

to solve in the conventional methods, i.e., the optimization of vehicle routing problems [86] with 
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multi-echelon systems. Heuristic and metaheuristic algorithms (modern algorithms) are becoming 

more widely used to reach the best optimization results in the shortest time. Furthermore, hybrid 

algorithms that combine more than one type are also used for the same purposes since they might 

achieve better results.  

As a brief literature review about the optimization algorithms, Shoja et al. [87] presented a hybrid 

algorithm of the GA and particle swarm optimization (PSO) algorithm for supply chain network 

design problems with the possibility of direct shipment, and the used algorithm showed superior 

results. Masood et al. [88] worked on a two-stage heuristic algorithm to enable a cost-efficient 

delivery for optimizing the material supply to mixed-model assembly lines that contribute to the 

overall production cost efficiency with reasonable solutions. Another study [89] used a GA to 

optimize service selection and schedule load balancing. Also, an upgraded firefly algorithm [90] was 

presented to enhance the performance in solving constrained engineering optimization problems. 

Bányai et al. [91] presented a mathematical model of just-in-sequence supply and a flower pollination 

algorithm-based heuristic was used to determine the optimal assignment and schedule for each 

sequence to minimize the total purchasing cost, which supports improving cost efficiency, and its 

performance to increase cost-efficiency in just-in-sequence solutions was validated. Inventory control 

of RL for shipping electronic commerce was presented [92] based on an improved multi-objective 

particle swarm algorithm, and it showed effective results. Another work [93] presented an algorithm 

to minimize the traveling distance of the handling machines when moving the cargo from an inbound 

truck to an outbound truck. This problem that was discussed is known as the cross-dock door 

assignment problem, and the solution was represented by a modified classical mathematical model.  

It is noticed that a few optimization algorithms were used several times within the analyzed articles. 

To mention three of them; the first one is the ant colony optimization algorithm (ACO), used as a 

hybrid algorithm. In an article in 2018, a hybrid algorithm of the ant colony optimization 

metaheuristic and the Floyd-Warshall algorithm was used [94] to minimize pickers' travel distance in 

manual warehouses. In 2016, a hybrid ACO was used for a closed-loop location-inventory-routing 

problem [95]. It considered the quality defect returns and the non-deficit returns in the e-commerce 

supply chain system to minimize the total cost of both forward and RL networks. The second one is 

swarm optimization. In 2019, a heuristic swarm optimization was used [96] in a low-carbon economy 

perspective, and it was based on the analysis of the need for optimizing the distribution path of cold 

chain logistics of agricultural products. This algorithm was improved from a convergence factor, 

inertia weight, learning factor, and population size. The results showed that the improved algorithm 

could effectively optimize the distribution path of cold chain logistics of agricultural products. Even 

though the dolphin swarm algorithm has proved its simplicity and effectiveness, it was falling into 

local optimization points with high-dimensional function optimization problems [97]. Therefore, 

chaotic mapping was proposed for the dolphin swarm algorithm, and the chaotic dolphin swarm 

algorithm was presented to successfully solve high-dimensional function optimization problems. The 

third one, the GA, was also used in hybrid systems. A study in 2019 [98] provided a comparative 

analysis of hybrid optimization intelligence models that combined different metaheuristic algorithms 

like GA, particle swarm optimization, shuffled frog leaping algorithm, and imperialist competitive 

algorithm. In another research [99], a three-stage supply chain network problem including suppliers, 

plants, distribution centers, and customers was investigated. This problem as it is a multi-echelon 

supply chain network, is considered an NP-hard problem, and a metaheuristic based on GA and 

invasive weed optimization was designed to find the problem solution. The results showed a high 

efficiency of that proposed approach. 

2.2. Heuristic optimization algorithms 

Scientific research in the vehicles and transportation area has complex and multi-objective cases that 

are defined as NP-hardness (non-deterministic polynomial-time hardness). These cases are very hard 

or even impossible to solve in the conventional methods, i.e., the optimization of vehicle routing 
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problems [86], especially when it uses the multi-echelon system. Heuristic and metaheuristic 

algorithms (modern algorithms) are becoming more widely used to reach the best optimization results 

within a brief time. Other developments such as using real distances between the locations were 

researched [S2]. Furthermore, hybrid algorithms that combine more than one type are also used for 

the same purposes since they may achieve better results. In an analytical review of modern 

optimization algorithms [S3], accelerated progress in using the heuristic and metaheuristic algorithms 

was found in various applications. Based on that, four optimization algorithms: genetic, particle 

swarm, simulated annealing, and ant colony are to be presented in detail.  

2.2.1 Genetic algorithm 

The GA is a metaheuristic inspired by the evolution operation and belongs to the major class of 

evolutionary algorithms in informatics and computational mathematics [100]. These algorithms are 

used to make high-quality solutions by optimization by focusing on bio-inspired operators such as 

selection, convergence, or mutations [101]. Starting with John Holland who developed the GA in 

1988 based on Darwin's evolutionary theory [102]. Afterward, in 1992, the GA was extended by him 

as well [103]. This algorithm is considered under the address of evolutionary algorithms, which are 

utilized to solve problems that are not already efficiently solved. This approach is used widely to 

solve logistics and supply chain optimization problems (scheduling, shortest path, etc.) that are 

considered NP problems, and in modeling and simulation, that heuristic approach is used [104]. Every 

possible solution has a group of characteristics (the phenotype or genes) that are evolved and changed; 

typically, solutions are encoded in the binary digits as strings of 0s and 1s, however, another codec is 

also possible. Evolution, in general, begins starting from a collection of random individuals as the 

consideration of an iterative process for finding the population in each reproduction. For each 

generation, the fitness of all the individual solutions in the population is measured. Then, with the 

fitness value, the objective feature is solved [105]. Afterward, the individuals’ fits are chosen 

sufficiently in a probability way from the existing population, and the gene is modified to make a new 

generation cycle for all (recombined and randomly with mutated potential). A newer generation of 

viable solutions would be reached in the next generation of the process. The algorithm usually stops 

and considers the reached generation as the optimized solution when either a maximum number of 

generations has been generated or satisfaction has been met [106]. For that reason, every successive 

generation should be a more suitable solution within the population. 

GA (): 

   Initialize the population. 

   Evaluate the initial population fitness.  

   while (termination criteria are not satisfied) do 

      Select parents from the current population.  

      Perform crossover between parents with a probability of pc 

   Mutate the new population with a probability pm 

   Evaluate the fitness of the new population. 

   Find the fittest (best) individual.  

end while 

2.2.2. Particle swarm algorithm 

PSO is a metaheuristic algorithm and one of swarm intelligence (SI) optimization algorithms, which 

use the power of collaboration to solve complex problems [107]. It is easy to implement, good with 

multi-objective problems, has few parameters for tuning, and is one of the best algorithms to find the 

maximum or minimum of the function. It is originally attributed to Kennedy and Eberhart in 1995 

[108] where the inspiration often comes from nature, it mimics the behavior of biological systems 

like fishes or a flock of birds. The social interaction concept is used to solve problems. Several 

particles (agents) constitute a swarm that moves around in search space, looking for the global best 
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solution within the possible solutions in the search space 𝑔𝑏𝑒𝑠𝑡. These particles communicate with 

one another using search directions (gradients) and each particle represents a potential solution to the 

problem and can remember the best position (solution) it has reached 𝑝𝑏𝑒𝑠𝑡 [109]. The swarm of 

particles updates its velocity and position from iteration to iteration, based on equations (1) and (2): 
𝑣𝑖(𝑡 + 1) =  𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))  (1) 

𝑥𝑖(t + 1) =  𝑥𝑖(t) +  𝑣𝑖(𝑡 + 1)  (2) 

Where 𝑣 is the velocity vector, 𝑥(𝑡) is the current position of the particle, and 𝑥(𝑡 + 1) is the new 

position in the next iteration, 𝑝𝑏𝑒𝑠𝑡 is the best solution this particle has reached; 𝑔𝑏𝑒𝑠𝑡 is the global 

best solution of all the particles. 𝜔 is a constant (inertia weight), 𝑐1 and 𝑐2 are two constants’ weights, 

and 𝑟1 and 𝑟2 are two random variables (acceleration coefficients) [110]. 

PSO (): 

   Initialize process:  

      Initialize the swarm position “𝑥” and velocity “𝑣” for each particle.  

      Initialize the current best 𝑝𝑏𝑒𝑠𝑡 and global best 𝑔𝑏𝑒𝑠𝑡 

   Repeat While (t < Max Iteration) 

      For each particle 𝑖:  
         Update its velocity 𝑣𝑖 and position 𝑥𝑖 by (1), (2) 

         Evaluate the objective function 𝑓(𝑥𝑖(t + 1)) 

          𝑝𝑏𝑒𝑠𝑡𝑖
 ← 𝑥𝑖(t + 1) If 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖

) > 𝑓(𝑥𝑖(t + 1)) 

          𝑔𝑏𝑒𝑠𝑡 ← 𝑥𝑖(t + 1) If 𝑓(𝑔𝑏𝑒𝑠𝑡) > 𝑓(𝑥𝑖(t + 1)) 

2.2.3. Simulated annealing 

SA algorithm is one of the oldest and preferred meta-heuristics methods for solving optimization 

problems. Specifically, for approximating the global optimization in a large search space and avoiding 

local minima [111]. It is inspired by the annealing of solids, which refers to a concept in physics 

describing the cooling of a solid until reaching minimal energy. The algorithm starts from a higher 

initial temperature. When the temperature gradually decreases, the solution tends to be stable [112]. 

The annealing concept was first developed in statistical mechanics, inspired by the behavior of 

physical systems in a heat bath [113]. Starting with Kirkpatrick et al. in 1983 [114] and Cerny in 1985 

[115], the concept of a general solution approach for optimization problems was introduced. In 

General, the algorithm starts with an initial solution 𝑥, then generates a candidate solution 𝑦 randomly 

or using some rule from the neighborhood of 𝑥. To decide whether the solution 𝑦 is accepted or not, 

the Metropolis acceptance criterion is used, which shows how a thermodynamic system moves from 

an old state to another new state to minimize the energy [116]. The temperature cooling rate is defined 

as α, and the acceptance probability is given by the following:  

𝑝 = {
1                                                     𝑖𝑓 𝑓(𝑥𝑛𝑒𝑤) < 𝑓(𝑥𝑜𝑙𝑑)

𝑒𝑥𝑝 (−
𝑓(𝑥𝑛𝑒𝑤)−𝑓(𝑥𝑜𝑙𝑑)

𝑇
)  𝑖𝑓 𝑓(𝑥𝑛𝑒𝑤) ≥ 𝑓(𝑥𝑜𝑙𝑑) 

  (3) 

and the temperature cooling schedule is defined as follows:  
𝑇𝑖+1 = 𝛼 𝑇𝑖   (4) 

SA (): 

Generate an initial solution 𝑥0 

𝑥𝑏𝑒𝑠𝑡 ← 𝑥0  

Compute the value of the objective function 𝑓(𝑥0) and 𝑓(𝑥𝑏𝑒𝑠𝑡) 

𝑇𝑖 ←𝑇0 

while 𝑇𝑖 > 𝑇𝑚𝑖𝑛 do 

𝑋𝑛𝑒𝑤 ← Generate a neighbor candidate. 

∆𝑓 ← 𝑓(𝑥𝑛𝑒𝑤) - 𝑓(𝑥𝑏𝑒𝑠𝑡) 

if ∆f < 0 then 

𝑥𝑏𝑒𝑠𝑡 ← 𝑥𝑛𝑒𝑤 
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else  

Calculate acceptance probability 𝑝 by (3) 

if random [0, 1] < 𝑝 then 

𝑥𝑏𝑒𝑠𝑡 ← 𝑥𝑛𝑒𝑤 

end if 

end if 

Update temperature 𝑇 by (4) 

𝑖 ← 𝑖 + 1 

end while 

Return 𝑥𝑏𝑒𝑠𝑡 

2.2.4. Ant colony optimization 

ACO has an easy-to-use context to find rough solutions to difficult optimization problems in the graph 

such as the shortest path problem. ACO is a stochastic-based metaheuristic method inspired by the 

foraging behavior of social ants in a colony [117]. Artificial ants are used to reach solutions to 

combinatorial optimization problems [118]. The ACO's principal idea is for ants to detect shorter 

routes between their nests and the locations of their food. A chemical substance that is called 

pheromone is released by the ants to allow communication with each other. While an ant travels, it 

deposits a specific pheromone amount, so the other ants are possible to follow. Each ant travels on a 

slightly random route until it enters a pheromone trail where it should decide to follow it or not. If 

this ant decides to follow this reached trail, the pheromone of this ant reinforces the existing trail. 

Therefore, the rise of the pheromone increases the probability of another ant selecting this path to 

follow as well. This leads to the idea that with the higher number of ants that travel on a specific 

route, attracting other ants to select this route is raised as well. Moreover, an ant that uses a shorter 

route to reach the food's location would return to the nest faster. With this consideration, further ants 

would finish the shorter route which means the pheromone would accumulate faster on shorter paths 

compared to the longer paths that would be less reinforced [119]. Pheromone's evaporation also 

participates in making the less desirable routes to be more difficult to detect by ants, which means 

further decreasing their usage in general. 

2.3. Optimization Algorithms Benchmarks 

The performance of the chosen algorithms "GA, PSO, SA, and ACO" is compared by conducting 

experiments on five benchmark functions; Python is used for implementing algorithms. The used 

benchmarks' functions are as follows where D is the number of dimensions. 

Ackley function, its formula: 

𝑓(𝑥) = −20 exp (−0.2√
1

𝐷
∑ 𝑥𝑖

2𝐷
𝑖=1 ) − exp (−

1

𝐷
∑ cos(2𝜋𝑥𝑖)

𝐷
𝑖=1 )  (5) 

Non-Continuous Rastrigin function, its formula: 
𝑓(𝑥) =  ∑ (𝑦𝑖

2 − 10 cos(2𝜋𝑦𝑖) + 10)𝐷
𝑖=1   (6) 

𝑦𝑖 = {
𝑥𝑖                                𝑖𝑓 |𝑥𝑖| < 0.5
𝑟𝑜𝑢𝑛𝑑(2𝑥𝑖)

2
           𝑒𝑙𝑠𝑒 |𝑥𝑖| ≥ 0.5

  (7) 

Alpine function, its formula: 
𝑓(𝑥) = ∑ |𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|

𝐷−1
𝑖=1   (8) 

Griewank function, its formula: 

𝑓(𝑥) =
1

4000
∑ 𝑥𝑖

2𝐷
𝑖=1 − ∏ cos (

𝑥𝑖

√𝑖
)𝐷

𝑖=1  + 1  (9) 

Schwefel 2.22 function, its formula: 
𝑓(𝑥) = ∑ |𝑥𝑖|

𝐷
𝑖=1 +  ∏ |𝑥𝑖|

𝐷
𝑖=1   (10) 

The comparison is on two bases; the optimized cost considering the average cost that was achieved 

by the algorithms and the average consumed time for code execution. The global minimum values of 
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the benchmark functions, the corresponding 𝑥 vectors as well as the lower and upper boundaries of 

the search space are presented in Table 1. 

Table 1: Benchmark functions boundaries 

Function name 𝑥𝑖𝑚𝑖𝑛
 𝑥𝑖𝑚𝑎𝑥

 𝑥∗ 𝑓(𝑥∗) 

Ackley -32 32 (0, 0, …, 0) 0 

Non-Continuous Rastrigin -5.12 5.12 (0, 0, …, 0) 0 

Alpine -10 10 (0, 0, …, 0) 0 

Griewank -600 600 (0, 0, …, 0) 0 

Schwefel 2.22 -10 10 (0, 0, …, 0) 0 

The four algorithms were run 20 times on each benchmark. The results of the evaluations were 

averaged, and the minimum evaluation value was also considered. Generally, the search space x* for 

any benchmark is continuous (belongs to the set of Real numbers), hence few adjustments had to be 

made to each algorithm. In the case of GA, both mutation operators and crossover operators had to 

be replaced. For PSO, no changes had to be applied since its default implementation complies with 

the search space. For SA, the method for generating the neighbor candidate was altered to conform 

to the continuous search space. The parameters for the four applied algorithms are as follows: 

• GA. Number of iterations: 4000. Population size: 100. Elite size: 30. Mutation probability: 

0.01 (1%). Crossover probability: 1.0 (100%). Crossover method: Simulated Binary Cross 

Over (SBX). Mutation method: Gaussian Mutation. Selection method: Fitness Proportionate 

Selection. 

• PSO. Number of iterations: 3000. Number of particles (agents) in a swarm: 100. Cognitive 

constant c1: 0.5. Social constant c2: 0.2. Velocity inertia w: 0.98. 

• SA. Number of iterations: 20000. Starting temperature: 1000. Stopping temperature: 10-14. 

Temperature cooling rate α: 0.997. 

• ACO. Number of iterations: 500. Number of ants (agents): 50. Pheromone evaporation rate 

(ρ): 0.5. (β) a parameter for controlling the relative importance of the heuristic (distance) 

factor on the probability of selection: 2.0. (α) a parameter for controlling the relative 

importance of pheromones on the probability of selection: 1.0. 

Table 2 shows the results of the benchmarks regarding the best cost and average cost of the 20 runs. 

Table 3 shows the results of the benchmarks regarding the average execution time.     

Table 2: Benchmark cost/average cost results 

Function name 
Best Cost/Average Cost 

GA PSO SA ACO 

Ackley 0.05435/ 0.07113 0.005506/0.03243 5.28125/12.156907 9.0755 E-10 /4.6073 E-09 

Non-Continuous Rastrigin 16.25899/20.1494 29.2752/57.0901 212.4601/267.4628 128.9573/191.2994 

Alpine 0.19723/0.45004 0.0095/0.80053 26.83422/39.64438 4.1060E-11 /6.9742E-08 

Griewank 0.0081/0.06693 0.00202/0.04938 0.82798/0.89061 0/0.02913 

Schwefel 2.22 0.2993/0.36172 0.02221/0.1611 28.67485/14655.573 1.47808E-12 /2.06256E-11 

Table 3: Benchmark execution time results 

Function name 
Average execution time (s) 

GA PSO SA ACO 

Ackley 30.8668 21.1457 6.2626 25.5904 

Non-Continuous Rastrigin 39.2308 36.8104 4.1272 26.2430 

Alpine 31.0246 17.3847 6.246006 25.8337 

Griewank 32.1173 24.835 6.2817 25.8969 

Schwefel 2.22 29.5942 14.7014 6.2413 24.6301 

Based on that, the ACO algorithm achieved the best minimization results across all benchmarks, 

except for Non-Continuous Rastrigin, where GA had prevailed. On the other hand, a comparison 

between PSO and GA on the rest of the benchmarks (Ackley, Alpine, Griewank, and Shwefel2.22) 
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shows that PSO attained better minimization results. Considering time efficiency, SA had the fastest 

average execution time among all algorithms and GA showed the longest average execution time. 

PSO was the second fastest in all benchmarks except for Non-Continuous Rastrigin, where ACO was 

the second fastest. The benchmarks revealed that ACO is the best in most optimization benchmarks 

followed by GA and PSO. However, when it comes to average execution speed across all 

benchmarks, SA was the fastest. The SA algorithm's efficiency can be attributed to the simplicity of 

its implementation. Next to the previous point, this could help a lot in the algorithm selection process 

depending on every case priority. While SA showed unstable results with big differences between the 

best and average costs, this can be solved by applying repeated runs for SA and selecting the best 

results when it is in use. These results could be highly effective for selecting the applied algorithm in 

the applications.  

This chapter included the main contribution to Thesis 1. (Chapters 1 and 4 contributed as well).   

Thesis 1: Building a comprehensive systematic literature review that presented, analyzed, and 

summarized the impact of Industry 4.0 in logistics systems in the light of sustainability and green 

environment. The literature was based on a developed mixed systemic methodology. The presented 

literature tackled the development and differences of optimization algorithms as they take an essential 

role in solving complex problems. Therefore, benchmark tests were used to compare and analyze the 

most used four algorithms' performance. The comparison was on two bases; the optimized average 

cost achieved by the algorithms and the average consumed time for code execution. Also, an upgrade 

for GA was presented with an explanation of the used coding system. Furthermore, a case study was 

solved using the described upgraded GA. [S1, S3, S4, S5, S10, S12]. 
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3. WASTE MANAGEMENT SYSTEM OPTIMIZATION  

This chapter discusses and shows the research direction of waste management system optimization 

as follows. An introduction to waste management that included real data on waste management in 

Hungary and Europe. Then a proposed CPS for waste collection with its parts and processes. Then, 

multi-echelon CPS in the city logistics is designed and described. To have a reference, a conventional 

city logistics solution is presented and described with its mathematical modeling. Then, the 

mathematical modeling of the multi-echelon collection and distribution optimization system is 

described and detailed. A numerical analysis is used to compare the two systems and clarify their 

effectiveness. After that, a further step with CPS for waste management focusing on energy efficiency 

and sustainability is discussed. The developed mathematical modeling is described. In the end, a VIII 

district Budapest case study is used to validate the system, for two scenarios of thirty and twenty 

smart bins. The achieved results of this chapter were published mainly in six articles [S2, S4, S6, S7, 

S8, S9]. 

3.1. Introduction 

Waste production is an indispensable human process that happens daily in all communities. With the 

population increase and the industry developments, the waste amounts are growing, and their treating 

processes are taking a bigger share of the transportation and handling tasks in the city logistics. These 

waste collection, transportation, and treatment are described as waste management, and it has been 

investigated and developed, especially with the various applications, solutions, and developments in 

the logistics, transportation, and industrial areas. Also, with the higher attention to the environmental 

impact in the different areas, the green aspect of waste management takes more importance, 

particularly in city logistics where congestion occurs regularly. 

The European Union repeatedly formulated aims, plans, and recommendations concerning waste 

management [120]. A common EU aim is to recycle 65% of municipal waste and 75% of packaging 

waste by 2030 [121]. The document “General Union Environment Action Program to 2020; Living 

well, within the limits of our planet” described a waste management hierarchy according to 

environmental aspects [120–122]: 

• prevention, 

• reduce waste. To avoid any extra amount of waste, 

• reuse. It requires relatively little or no processing where the material can be used again without 

any structural changes, 

• recycling, and waste treatment. It means creating usable raw materials from the waste, 

• incineration with energy recovery. The released gases and heat are used for power generating. 

By the end of this process, the gases are released after purification from any contaminated 

substances, 

• disposal. This method remains the worst option that should be avoided for its long-term affect. 

It is possible to describe waste management as the collective process of monitoring, collecting, 

transporting, treating, recycling, or disposing of waste. This process takes its importance to lighten 

the negative effects of waste on the health, environment, and public appearance. Waste can be defined 

as any excess undesirable material, and it can mean rubbish or trash. Waste collection is a main part 
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of the waste management process. It is the process of transferring the waste to the treatment or landfill 

facility. Waste treatment refers to the needed processes to ensure that waste has the least possible 

effect on the environment. The waste treatment methods may vary from one country to another [S8]. 

On the one hand, waste management may be considered as a necessary cost that should be paid to 

reach a clean environment that is not harmful to the health of inhabitants. On the other hand, other 

authorities give significant importance to waste management because it saves raw materials resources. 

Many developed countries implemented successfully waste treatment projects to get benefits from 

waste like recycling. 

Regarding analysis the waste management development, It is observed that there is a shift towards a 

more holistic approach in the analysis of waste management [123], and reducing environmental 

impact is the priority for future generations. Waste minimization mechanisms should be implemented 

as well, taking into consideration the sustainable development principles [122]. Also, sustainable 

development implementation mustn't cause long-term business disadvantages for companies [124]. 

Numerous European cities have been using sustainable systems in waste management for a few years, 

working on optimizing the generated and collected amounts of waste to a minimum. However, the 

dominant method of waste disposal is landfilling in Hungary [120]. The waste minimization 

techniques can be used in the waste reduction of municipal waste treatment, but the waste 

management problem in the European Union is classified by [125]: 

• the increase in industrialization and urbanization, 

• the increase in the generated waste amount per capita, 

• they maintain need of a high level of infrastructure investment (incinerators, landfills, 

recycling facilities), 

• institutional barriers, 

• the diversity of interest groups next to the political and legal changes in the field of waste 

management. 

Different waste collection solutions are analyzed in the literature focusing on various aspects of 

evaluation, like technology, logistics, human resources, policies, and social aspects [17]. The optimal 

structure of the waste collection system influences the performance of waste collection processes. A 

Portugal case study shows that strategic expansion plans of waste management companies can be 

supported by complex mathematical models and heuristic optimization algorithms [126]. The 

importance of multi-level solutions is highlighted with a three-phase hierarchical approach in the 

Spanish region of Galicia [127] and Ankara [128]. The authors focused on routing problems and 

facility location. Waste collection systems show a broad range of uncertainties, for instance, the 

design of appropriate infrastructure difficulties for waste collection and recycling were described in 

a Hong Kong case study [129]. Other case studies from Denmark [130], Kampala City [131], Italy 

[132], and Taiwan [133] demonstrated the importance of new technologies in municipal waste 

collection systems. 

By using the Eurostat Statistics, the statistical office of the European Union, two data imported to be 

analyzed: the municipal waste management operations [134] and the recycling rate of municipal 

waste [135]. It should be considered that the collected dataset was based on municipal waste which 

is produced by households next to other waste sources like commerce, offices, and public institutions. 

The generated municipal waste amount data includes the collected waste by or on behalf of municipal 

authorities and disposed of through the responsible waste management system. The municipal waste 

recycling rate gives a useful indication of the overall waste management system quality. The recycling 

rate indicator measures the share of recycled municipal waste in the total municipal waste generation. 

Recycling includes material recycling, composting, and anaerobic digestion. The ratio is expressed 

in percent (%) as both terms are measured in the same unit, namely tons. The following definitions 

were introduced within the collected data: 

• Incineration expresses thermal treatment of waste in an incineration plant, 

• Energy recovery is defined as the incineration that fulfills the energy efficiency criteria, 
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• Recycling means any recovery operation in which waste materials are reprocessed into 

products, materials, or substances whether for the original or other purposes, 

• Composting and anaerobic digestion are processes of biological decomposition of 

biodegradable waste under controlled aerobic (composting) or anaerobic conditions, 

• Landfill is defined as the deposit of waste into or onto land; it includes specially engineered 

landfills and temporary storage of over one year on permanent sites. 

Based on the presented table [S7] for the annual municipal for 37 European countries from 2014 to 

2020. The waste amount in Hungary is relatively the same except for 2020 where it is 6.5% less than 

the average of 2014-2019. Also, for the annual municipal waste generated in kilograms per capita for 

the same 37 European countries [S7], it would be easier to compare the numbers in this case. In 2014, 

Hungary was 24th in the order, while it is 33rd in 2018, which means a waste amount decrease, and 

that is harmonious with the previous table. On the other hand, the recycling rate of municipal waste 

as a percentage data was available for only 36 European countries [S7]. Based on the presented table, 

Hungary had a very slight rise in the recycling rate between 2014 and 2020 taking into consideration 

that the maximum rate was in 2018. The data showed that Hungary does not have a noticeable increase 

in the recycling rate in the last few years, which reflects a possibility and need for further research 

and developments in this area. 

3.2. Proposed cyber-physical waste collection system 

The collection of household waste is performed in a wide geographical area which means that 

collection represents a significant part of the whole costs. Waste management systems need up-to-

date technical, technological, and logistics solutions to increase efficiency, reliability, and flexibility. 

The application of Industry 4.0 technologies offers a good opportunity to transfer conventional waste 

collection and processing systems into a CPS. For that, a new municipal waste collection system 

based on Industry 4.0 technologies is to be presented. Municipal waste means all kinds of garbage, 

which results in normal life in residential communities such as houses, apartments, and villas, or 

places attached to population groups such as supermarkets, shops, grocery stores, and similar places. 

In another expression, all solid waste related to humans if it has no chemical, biological, or potentially 

hazardous effects on humans is considered municipal waste. The waste that results from the 

demolition and construction process, is also municipal waste, but it is not included in this system 

because it does not exist in inhabited communities, or it only exists as temporary work and the 

resulting waste should be transferred by special trucks directly to the landfill. This system includes 

dealing with the waste starting from the source points until the waste treatment facilities. Figure 10 

shows the scheme of this proposed system. The system management cloud is connected directly to 

all the system’s parts. As the purpose of this system is to present an initial scheme to show the general 

concept and possible acquired benefits, the mentioned numbers and techniques were anticipated while 

the tackled parts are detailed later in the chapter. 
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Figure 10: CPS waste collection system scheme 

This system can be divided into five parts: containers, treatment facilities, collection and transfer 

station, trucks, and system management cloud. 

1. Containers. Two types of containers are used.  

O type, which is used for organic waste. There should be a container for each building with a different 

capacity depending on the size of the building. This container has a sensor to measure the size of the 

waste inside it. This sensor can give three different colors as notifications, depending on the amount 

of waste inside the container. A yellow notification, which means it contains at least 50%, an orange 

notification, which means it contains at least 75%, and a red notification, which means it contains 

more than 90%. 

M type, which is used for inorganic waste (mixed). There should be a container of this type for each 

group of buildings where the citizens can throw the inorganic waste directly at them without the need 

to separate them. The person who wants to throw the waste needs to use his specific ID card. Each 

user's data is stored on the system's server automatically with the amount of trash he/she has thrown 

out and the time. Therefore, people who do not have an ID card cannot use this container, to avoid 

any damage that may result from the dumping of organic garbage or stones for example.  

The M container has two parts. The first part is above the ground, which is used by the people to 

throw the waste inside it directly after using the ID card. The second part is divided into three sections. 

The first one is for paper and cartons, the second one is for glass and the third one is for electronics 

and other waste types. After throwing the waste into the first part, the waste is sorted automatically 

into the suitable section in the second part. Weight measuring, size measuring, and X-rays are possible 

to be used in the sorting process. The second part is underground and cannot be reached without using 

a special work ID by the workers, so the container is emptied into the waste collection vehicle by 

using hydraulic lifting equipment. As O type container, each section in the second part has a sensor 

to measure the size of the waste inside it. This sensor can give three different colors as notifications, 

depending on the amount of waste inside the container. A yellow notification indicates at least 50% 

full, an orange notification indicates at least 75% full, and a red notification indicates more than 90% 

full.  

Both types of containers have active Radio frequency Identification (RFID) to send their information 

continuously to the system. A notification is also sent to the system every time the containers are 

emptied, by using the worker’s ID card. 
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2. Treatment facilities. They are the final stage where the waste is transported to be treated or used in 

the best manner. These facilities are divided according to the type of waste they deal with into four 

sections. 

Firstly, renewal. In this section, waste is reused or disassembled for useful parts. The most targeted 

waste here is clothes, electrical, and mechanical equipment. After completion of the dismantling and 

evaluation phase, any excess material is transferred to one of the other sections when there is enough 

to fill a full transport truck. 

Secondly, recycle. In this section, the raw materials are obtained for recycling, which means reducing 

the waste amount that needs to be disposed of. The main possible waste here is paper and glass.  

Thirdly, incineration. In this section, unusable and non-recyclable materials are collected to be 

burned; the obtained heat is used to produce energy. 

Fourthly, landfill. In this section, the remaining waste is buried after treatment to have faster 

biodegradation. The gases produced by the biodegradation of organic waste after burying can be 

collected and utilized. 

3. Collection and transfer station. Waste, which comes from containers, is collected at this station 

depending on the type. Additional sorting is done within this station to avoid any mistake in the type 

of waste that might happen in the containers. Possible to collect information from gentelligent 

technology devices in this station. 

This station is close to the city to speed up the process of transporting waste and there is no need to 

be a very large area because the amount of transported waste can be optimized to not exceed a specific 

percentage based on coming collected waste from the containers and transferred waste to the 

treatment facilities. The purpose of this station is to organize waste sorting and transport operations. 

On the other hand, large trucks are used to transport the waste to the treatment facilities as they are 

relatively far from the city. 

4. Trucks. These trucks are dedicated to transport waste and handle loading & unloading waste easily. 

Two types of trucks are used in this system. Waste collection trucks, to move the waste from the 

containers to the collection and transfer station. The size of these trucks is suitable to be used for 

containers unloading and for moving within the city. And waste transfer trucks to move the waste 

from the collection and transfer station to the treatment facilities. Their size is bigger than the first 

type to be suitable for transporting waste outside the city faster.  

5. System management cloud. All the above-mentioned parts are directly connected to the system 

management using the internet. Cloud computing is used to store data and deal directly with all the 

system parts. It also allows administrators to access their accounts for monitoring and guidance, 

according to their permissions. All data about the transportation, delivery of waste, collection trucks 

and waste quantities in each part of the system, as well as the records of surveillance cameras are 

saved. Programs with special algorithms are used to create routes of waste collection trucks according 

to the waste type and quantities within the containers. In addition, there is available customer service 

for complaints and remarks at any time, connected to system management. 

This was an overview of a cyber-physical municipal waste collection system that optimally serves 

humanity while preserving time & effort and reducing environmental damage. It is a clear example 

of applying modern technologies in the field of waste management logistics. The system's structure 

offers the possibility to modify this system and suit the size of the city. In large cities, more than one 

system can be applied to suit the required size, such as making more than one collection and transfer 

station or dividing the city into two, three, or more sections with individually responsible systems 

that are connected to the management level only. This means centralized and decentralized 

management simultaneously to achieve greater flexibility. Further details were mentioned about the 

system mechanism in this article [S8].  
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3.3. Evaluation of a conventional city logistics solution 

In the case of conventional city logistics solutions, the supply of pick-up, and delivery points 

(households, supermarkets, shops, etc.) is processed directly (Figure 11). However, more and more 

e-vehicles are adopted in supply chain solutions, but most of the cargo trucks are conventional diesel 

trucks. Their processes are optimized by the agents of each service provider, but the separated 

optimization without any cooperation leads to increased fuel consumption and emission. Therefore, 

an evaluation methodology is shown, which makes it possible to evaluate existing conventional city 

logistics solutions to define reference parameters for further comparison with the optimized system. 

Without any cooperation of large service providers and self-employed truck drivers, it is not possible 

to optimize this conventional solution. The optimization of each service provider is great from their 

point of view, but it has no significant impact on the emission reduction target. Meeting the targets 

of zero-emission in urban centers by 2030 [S9] the below-described methodology makes it possible 

to find the bottlenecks of the system, which can have a great impact on the emission of the urban area. 

 

Figure 11: Conventional city logistics solution 

The evaluation methodology focuses on time, fuel- and emission-related objective functions, while 

no capacity, energy, availability, and time-related constraints are taken into consideration because the 

system is in this case only evaluated and not optimized. 

The first parameter of the evaluation is the total length of transportation routes within the period of 

analysis. The transportation is performed with conventional trucks and no logistics center is taken 

into consideration for pick-up and delivery operations; all pick-up and delivery are performed by the 

trucks as direct supply. The parameter of the evaluation, in this case, can be written as follows: 

   𝐿 = ∑ ∑ 𝑙 (𝑝𝑦𝑥𝛼,𝛽
∗ , 𝑝𝑦𝑥𝛼,𝛽+1

∗ )

𝛽𝑚𝑎𝑥
𝛼 −1

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

 (11) 

where 𝐿 is the total length of the transportation routes within the time span of optimization, 𝛼 is the 

number of delivery trucks, 𝛽𝑚𝑎𝑥
𝛼  is the number of pick-up and delivery points assigned to collection 

route 𝛼, 𝑥𝛼,𝛽
∗  is the ID number of pick-up and delivery task assigned to route 𝛼 as pick-up or delivery 

task 𝛽, 𝑦𝑥𝛼,𝛽
∗  defines the ID of pick-up or delivery point, 𝑝𝑦𝑥𝛼,𝛽

∗  is the position of pick-up or delivery 

point assigned to route 𝛼 as pick-up or delivery task 𝛽 and 𝑙 is the length of transportation route as a 

function of positions of pick-up and delivery points. 

The second parameter of the evaluation is the fuel consumption, which can be calculated depending 

on the length of transportation routes, required material handling operations (loading and unloading), 

and the specific fuel consumption rate: 
   𝐶𝐹𝑈𝐸𝐿 = 𝐶𝑇

𝐹𝑈𝐸𝐿(𝑙, 𝑣, 𝑐𝛼,𝛽
𝐹𝑇 ) + 𝐶𝑀𝐻

𝐹𝑈𝐸𝐿(𝑐𝛼,𝛽
𝐹𝑀𝐻) (12) 
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where 𝐶𝑇
𝐹𝑈𝐸𝐿 is the fuel consumption of the whole transportation process without material handling 

(loading and unloading), 𝑐𝛼,𝛽
𝐹𝑇  is the specific fuel consumption of transportation, 𝐶𝑀𝐻

𝐹𝑈𝐸𝐿 is the fuel 

consumption of material handling operations at the pick-up and delivery points, 𝑐𝛼,𝛽
𝐹𝑀𝐻 is the specific 

fuel consumption regarding material handling operations and 𝑣 is the average speed of the truck. 

The fuel consumption of the transportation process can be expressed as 

   𝐶𝑇
𝐹𝑈𝐸𝐿 = ∑ ∑ 𝑙 (𝑝𝑦𝑥𝛼,𝛽

∗ , 𝑝𝑦𝑥𝛼,𝛽+1
∗ ) ∙ 𝑞𝑥𝛼,𝛽

∗ ∙ 𝑐𝛼,𝛽
𝐹𝑇 (𝑞𝑥𝛼,𝛽

∗ )

𝛽𝑚𝑎𝑥
𝛼 −1

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

 (13) 

where 𝑞𝑥𝛼,𝛽
 is the pick-up or delivery volume assigned to route 𝛼 as pick-up or delivery task 𝛽. 

The specific fuel consumption of the transportation process can be calculated as follows: 

   𝑐𝛼,𝛽∗
𝐹𝑇 = 𝑐𝛼,𝑚𝑖𝑛

𝐹𝑇 +
𝑐𝛼,𝑚𝑎𝑥

𝐹𝑇 − 𝑐𝛼,𝑚𝑖𝑛
𝐹𝑇

𝑐𝛼,𝑚𝑎𝑥
𝐹𝑇

∙ (𝑞𝛼𝑚𝑎𝑥
𝑇𝑅𝐴𝑁𝑆 − ∑ 𝑞𝑥𝛼,𝛽

∗

𝛽∗

𝛽=1

) (14) 

where 𝑐𝛼,𝑚𝑖𝑛
𝐹𝑇  and 𝑐𝛼,𝑚𝑎𝑥

𝐹𝑇  are the lower and upper limit of fuel consumption of transportation 

depending on the weight of loading and 𝑞𝛼𝑚𝑎𝑥
𝑇𝑅𝐴𝑁𝑆 is the upper limit of the loading weight. 

The fuel consumption of the loading and unloading operations performed by the truck mounted crane 

can be given by 

   𝐶𝑀𝐻
𝐹𝑈𝐸𝐿 = ∑ ∑ 𝑐𝛼,𝛽

𝐹𝑀𝐻(𝑞𝑥𝛼,𝛽
∗ )

𝛽𝑚𝑎𝑥
𝛼

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

 (15) 

The specific fuel consumption of material handling processes can be calculated as follows: 

   𝑐𝛼,𝛽
𝐹𝑀𝐻 = 𝑐𝛼,𝑚𝑖𝑛

𝐹𝑀𝐻 +
𝑐𝛼,𝑚𝑎𝑥

𝐹𝑀𝐻 − 𝑐𝛼,𝑚𝑖𝑛
𝐹𝑀𝐻

𝑐𝛼,𝑚𝑎𝑥
𝐹𝑀𝐻

∙ (𝑞𝛼𝑚𝑎𝑥
𝑀𝐻 − 𝑞𝑥𝛼,𝛽

∗ ) (16) 

where 𝑐𝛼,𝑚𝑖𝑛
𝐹𝑀𝐻  and 𝑐𝛼,𝑚𝑎𝑥

𝐹𝑀𝐻  are the lower and upper limit of fuel consumption of material handling 

depending on the weight of loading and 𝑞𝛼𝑚𝑎𝑥
𝑀𝐻  is the upper limit of the material handling weight. 

The third parameter of the evaluation is the emission, which can be calculated depending on the fuel 

consumption: 
   𝐸𝑟 = 𝐸𝑇𝑅𝐴𝑁𝑆

𝑟 (𝑙, 𝑣, 𝑐𝛼,𝛽
𝐹𝑇 ) + 𝐸𝑀𝐻

𝑟 (𝑐𝛼,𝛽
𝐹𝑀𝐻) (17) 

where 𝐸𝑟 is the total emission in the time span of the optimization for emission type 𝑟 (CO2, NOx, 

CO, HC, PM, SO2). 

The emission of the transportation and material handling process can be described by Equations (18-

19): 

  𝐸𝑇𝑅𝐴𝑁𝑆
𝑟 = ∑ ∑ 𝑙 (𝑝𝑦𝑥𝛼,𝛽

∗ , 𝑝𝑦𝑥𝛼,𝛽+1
∗ ) ∙ 𝑐𝛼,𝛽

𝐹𝑇 ∙ 𝑒𝛼,𝛽
𝑟 (𝑐𝛼,𝛽

𝐹𝑇 )

𝛽𝑚𝑎𝑥
𝛼 −1

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

 (18) 

   𝐸𝑀𝐻
𝑟 = ∑ ∑ 𝑐𝛼,𝛽

𝐹𝑀𝐻(𝑞𝑥𝛼,𝛽
∗ ) ∙ 𝑒𝛼,𝛽

𝑟 (𝑐𝛼,𝛽
𝐹𝑀𝐻)

𝛽𝑚𝑎𝑥
𝛼

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

 (19) 

For the mentioned system, the following conventional city logistics problem is analyzed and 

evaluated. There are 25 pick-up and delivery points in the downtown area, where five delivery trucks 

collect and distribute various types of goods (e.g., package delivery, waste collection). The positions 

of the delivery points, the weight and loading/unloading time of goods at each pick-up and delivery 

points are known (see Table 4 and Table 5). 

Table 4: Positions of pick-up and delivery points (test data) 

PID Coordinates PID Coordinates PID Coordinates PID Coordinates 

ID1 x y ID1 x y ID1 x y ID1 x y 

1 3.745 5.905 2 4.444 5.629 3 5.052 5.187 4 5.532 4.608 

5 5.852 3.928 6 5.993 3.191 7 5.947 2.441 8 5.715 1.725 

9 5.313 1.091 10 4.766 0.575 11 4.108 0.212 12 3.381 0.024 

13 2.628 0.023 14 1.901 0.208 15 1.241 0.569 16 0.692 1.083 

17 0.288 1.716 18 0.054 2.431 19 0.005 3.181 20 0.144 3.919 
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21 0.462 4.601 22 0.941 5.181 23 1.547 5.624 24 2.245 5.903 

25 2.991 5.999 REF2 5.800 6.200 - - - - - - 
1PID ID = Pick-up or delivery point identification number. 2REF = Reference point, from where the supply chain process is 

evaluated.  

There are 5 delivery routes within the time span of analysis, the capacity of each delivery truck is 400 

LU (loading unit). Each delivery route includes six pick-up or delivery points excluding reference 

points. The fuel consumption of the trucks is between 41 and 52 L/km depending on the weight of 

the load, while I am calculating with an average speed of 25 km/h in the downtown area. Loading 

and unloading operations are processed by truck-mounted cranes, which have an energy consumption 

between 25 and 37 L/loading per hour depending on the weight of loading. 

Table 5: Weight of goods to pick-up or delivery (test data) 

PID ID1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Weight2 -13 -23 -43 -26 -65 -38 51 31 12 -31 -12 24 42 -23 62 

LUT3 1.2 1.8 1.8 3.0 2.4 2.4 1.2 3.0 2.1 2.4 3.6 1.5 2.4 6.0 3.6 

PID ID1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Weight2 27 45 6 56 -42 32 34 55 -21 20 43 92 34 10 12 

LUT3 2.4 3.0 2.1 1.8 3.0 2.4 1.2 12 18 6.0 3.0 2.4 2.4 2.1 18 
1PID ID = Pick-up or delivery point identification number. 2Positive values represent delivery points, negative values represent pick-up points. 
3Loading/unloading time. 

The pick-up and delivery routes are optimized by each service provider without any cooperation. It 

means that within the frame of this scenario, there is no further optimization performed, the results 

of the analysis of this scenario are used as reference parameters for the later optimization. 

As an example, the calculated parameters regarding transportation time, fuel consumption, and 

emission of route 1 are shown in Figure 12 and Figure 13. The first service provider is a municipal 

waste collection provider using a garbage collection truck. It means that its route is a simple collection 

route with pick-up points. Its collection route is 19.04 km, the total collection time is 0.97 hours, 

while the energy consumption is 12.48 L fuel (see Figure 12). 

 

Figure 12: Total transportation time and energy consumption of route 1 

The emission of diesel consumption can be calculated by [136]. In the case of the first collection 

route, the CO2 emission is 33624 g, the NOx emission is 148 g, the CO emission is 37.5 g, the HC 

emission is 14.9 g, the PM emission is 1.25 g, and the SO2 emission is 0.99 g. 
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Figure 13: Emission of garbage collection truck in scenario 1 

The values of the parameters calculated for the other 4 routes (route 2-5) and the summarized values 

for scenario 1 are shown in Table 6.  

Table 6: Reference parameters were calculated in scenario 1 

Route 

ID 

Time 
DIS3 

Fuel consumption Emission4 

TR1 M2 Total TR1 M2 Total CO2 NOx CO HC PM SO2 

1 0.76 0.21 0.97 19.04 9.56 2.92 12.48 33624 148 37.5 14.9 1.25 0.99 

2 0.75 0.23 0.98 18.92 9.03 2,35 11.38 30656 135 25.0 13.6 1.13 0.91 

3 0.77 0.33 1.10 19.41 9.82 2.18 12.00 32354 143 26.4 14.4 1.20 0.96 

4 0.77 0.64 1.41 19.41 9.84 2.27 12.11 32637 144 26.6 14.5 1.21 0.96 

5 0.83 0.56 1.39 20.87 10.68 2.08 12.76 34382 152 28.1 15.3 1.27 1.02 

Total 3.88 1.97 5.85 97.65 48.93 11.80 60.73 163653 722 143.6 72.7 6.06 4.84 
1TR = Transportation time [hours]. 2M = Materials handling time [hours] (loading/unloading). 3DIS = Distance [km]. 4Emission [g]. 

3.4. Multi-echelon collection and distribution optimization system 

An optimization methodology for a multi-echelon city logistics solution is described. The external 

logistics service providers are transporting goods to/from logistics centers located outside of the urban 

area (city border). The collection and distribution of goods to/from pick-up and delivery points are 

processed from this intermediate storage directly by e-trucks and micro-mobility e-vehicles (Figure 

14). The optimization of the whole process is centralized. It means that in this case there is strong 

cooperation among transportation resources and not only the fuel consumption but also the emission 

of various greenhouse gases can be reduced. The intelligent agent optimizes scheduling, assignment, 

routing layout design, and controlling tasks that focus on time, distance, energy consumption, and 

emission-related objective functions, while capacity, availability, suitability, time-window, energy, 

and service level related constraints can limit the optimal solution. This scenario focuses on an e-

vehicle-based solution, where the efficiency of the whole system can be increased by using existing 

Industry 4.0 technologies, like smart devices, radiofrequency identification, digital twin solutions, 

and cloud and fog computing to solve big data problems of a large-scale system including a wide 

range of users, transportation resources and goods. 
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Figure 14: Model of multi-echelon collection and distribution system in downtown areas 

The following parameters are taken into consideration as input parameters of the optimization task 

regarding the city area, including locations and tasks: location of pick-up and delivery points, the 

weight of pick-up and delivery tasks, upper- and lower-time limits for pick-up and delivery tasks. The 

following input parameters are linked to the logistics center: the capacity of loading devices, 

warehouse capacity, location of warehouses, available resources for transportation and materials 

handling, specific emission, and energy consumption of resources. These parameters are extensively 

discussed after the equations. 

The first objective function is the minimization of the total length of transportation routes which can 

be based on Equation (10): 

   𝐿 = ∑ ∑ 𝑙 (𝑝𝑦𝑥𝛼,𝛽
, 𝑝𝑦𝑥𝛼,𝛽+1

) → 𝑚𝑖𝑛.

𝛽𝑚𝑎𝑥
𝛼 −1

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

 (20) 

where 𝑥𝛼,𝛽 is the decision variable of the optimization problem. 

The second objective function is the minimization of the fuel consumption, which can be given like 

Equation (2) by 

𝐶𝑒𝐹𝑈𝐸𝐿 = ∑ ∑ 𝑙 (𝑝𝑦𝑥𝛼,𝛽
, 𝑝𝑦𝑥𝛼,𝛽+1

) ∙ 𝑞𝑥𝛼,𝛽
∙ 𝑐𝛼,𝛽

𝑒𝐹𝑇(𝑞𝑥𝛼,𝛽
)

𝛽𝑚𝑎𝑥
𝛼 −1

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

+ ∑ ∑ 𝑐𝛼,𝛽
𝑒𝐹𝑀𝐻(𝑞𝑥𝛼,𝛽

)

𝛽𝑚𝑎𝑥
𝛼

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

→ 𝑚𝑖𝑛. (21) 

where 𝐶𝑒𝐹𝑈𝐸𝐿 is the energy consumption of e-trucks and micro-mobility vehicles in kWh. 

The specific fuel consumption can be calculated by Equation (12) and Equation (16). The third 

objective function is the minimization of CO2, NOx, CO, HC, PM, and SO2 emission, which can be 

written like Equation (17): 

   𝐸𝑟 = ∑ ∑ 𝑙 (𝑝𝑦𝑥𝛼,𝛽
, 𝑝𝑦𝑥𝛼,𝛽+1

) ∙ 𝑐𝛼,𝛽
𝑒𝐹𝑇 ∙ 𝑒𝛼,𝛽

𝑟

𝛽𝑚𝑎𝑥
𝛼 −1

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

+ ∑ ∑ 𝑐𝛼,𝛽
𝑒𝐹𝑀𝐻(𝑞𝑥𝛼,𝛽

) ∙ 𝑒𝛼,𝛽
𝑟

𝛽𝑚𝑎𝑥
𝛼

𝛽=1

𝛼𝑚𝑎𝑥

𝛼=1

→ 𝑚𝑖𝑛. (22) 

where 𝑐𝛼,𝛽
𝑒𝐹𝑇 is the specific energy consumption of e-trucks and micro-mobility vehicles in kWh/LUkm 

(LUkm = loading unit kilometer) and the emissions depends on the e-fuel consumption: 

   𝑒𝛼,𝛽
𝑟 = 𝑒𝛼,𝛽

𝑟 (𝑐𝛼,𝛽
𝑒𝐹𝑇) and 𝑒𝛼,𝛽

𝑟 = 𝑒𝛼,𝛽
𝑟 (𝑐𝛼,𝛽

𝑒𝐹𝑀𝐻) (23) 
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The above-mentioned optimization problem is limited by some constraints. The first constraint is a 

capacity-related constraint, which defines that it is not allowed to exceed the loading capacity of the 

available e-trucks and micro-mobility vehicles (e-cargo bikes, e-cargo scooters, or cargo drones): 

   ∀𝛼: max (𝑞𝑥𝛼,1
, ∑ 𝑞𝑥𝛼,𝛽

,

2

𝛽=1

∑ 𝑞𝑥𝛼,𝛽
,

3

𝛽=1

⋯ ∑ 𝑞𝑥𝛼,𝛽
,

𝛽𝑚𝑎𝑥
𝛼

𝛽=1

) ≤ 𝑄𝛼
𝑇𝑚𝑎𝑥 (24) 

where 𝑄𝛼
𝑇𝑚𝑎𝑥 is the loading capacity of vehicle 𝛼. 

The second constraint defines that all pick-up and delivery operations must be performed within a 

given time span: 
   ∀𝑘: (∃𝛼, 𝛽) → 𝑥𝛼,𝛽+1 = 𝑘 (25) 

The third constraint defines that it is not allowed to exceed the capacity of the available loading 

resource (mounted loading crane or human resource): 
   ∀𝛼, 𝛽: 𝑥𝛼,𝛽 > 0 → 𝑞𝑥𝛼,𝛽

≤ 𝑄𝛼
𝐿𝑚𝑎𝑥  (26) 

where 𝑄𝛼
𝐿𝑚𝑎𝑥 is the capacity of the available loading resource of transportation device 𝛼. 

The fourth constraint defines that it is not allowed to exceed the available energy of e-truck and micro-

mobility vehicles: 
   ∀𝛼: 𝐶𝛼,𝛽𝑚𝑎𝑥

𝛼
𝑒𝐹𝑈𝐸𝐿 ≤ 𝐶𝛼

𝑒𝐹𝑈𝐸𝐿𝑚𝑎𝑥 (27) 

where 𝐶𝛼,𝛽𝑚𝑎𝑥
𝛼

𝑒𝐹𝑈𝐸𝐿  is the energy consumption of e-truck 𝛼 passing the last pick-up or delivery point 

assigned to route 𝛼 and 𝐶𝛼
𝑒𝐹𝑈𝐸𝐿𝑚𝑎𝑥 is the available energy of e-truck 𝛼. 

The fifth constraint defines that the utilization of available e-trucks and micro-mobility vehicles must 

be as equal as possible to increase the flexibility of the system: 

 ∑ |�̅� − 𝜂𝛼|

𝛼𝑚𝑎𝑥

𝛼=1

 → 𝑚𝑖𝑛.  (28) 

where 𝜂𝛼 is the utilization of the e-truck, which can be written as follows: 

∀𝛼: 𝜂𝛼 =
1

𝑄𝛼
𝑇𝑚𝑎𝑥

∙ max (𝑞𝑥𝛼,1
, ∑ 𝑞𝑥𝛼,𝛽

,

2

𝛽=1

∑ 𝑞𝑥𝛼,𝛽
,

3

𝛽=1

⋯ ∑ 𝑞𝑥𝛼,𝛽
,

𝛽𝑚𝑎𝑥
𝛼

𝛽=1

) (29) 

and �̅� is the average utilization of e-vehicles, which can be calculated by 

�̅� =
1

𝛼𝑚𝑎𝑥

∙ ∑ 𝜂𝛼

𝛼𝑚𝑎𝑥

𝛼=1

 (30) 

The sixth constraint defines that the pick-up and delivery tasks can be processed only with suitable 

vehicles: 
 ∀𝑘: 𝑠𝑘,𝛼 = 0 →  𝑥𝛼,𝛽 = 0 otherwise 𝑥𝛼,𝛽 ∈ (0,1) (31) 

where 𝑠𝑘,𝛼 is the suitability parameter; if 𝑠𝑘,𝛼 = 1 then e-vehicle 𝛼 is suitable to process pick-up or 

delivery task 𝑘, otherwise not. 

Next, the following multi-echelon city logistics problem is analyzed and evaluated. There is a 

logistics center outside the city border and e-vehicles are available to perform pick-up and delivery 

tasks. The 25 pick-up and delivery points in the downtown area and the 30 pick-up and delivery tasks 

are the same as in a conventional solution. The positions of the delivery points, the weight and 

loading/unloading time of goods at each pick-up and delivery points are known (see Table 4 and 

Table 5). Table 7 shows the suitability matrix, which is an assignment matrix among e-vehicles and 

pick-up or delivery tasks. 

Table 7: Suitability of vehicles to perform pick-up and delivery tasks 

PID ID1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

GT2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

e-T A3 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 

e-t B3 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 

e-t C3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

PID ID1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

GT2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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e-T A3 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 

e-t B3 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 

e-t C3 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 
1PID ID = Pick-up or delivery point identification number. 2GT = garbage truck. 2e-T = e-truck for general transportation purposes. 

Other input parameters of the optimization problem regarding the e-vehicles, like capacity, specific 

energy consumption, are shown in Table 8. 

Table 8: Energy consumption and capacity parameters of e-vehicles 

Vehicle 

Energy consumption 

Transportation [kWh] 

Energy consumption 

Loading/unloading [kWh] 
Capacity [LU] 

min max min max TRANS1 MH2 

GT3 20 41 14 22 300 80 

e-T A4 11 18 12 17 350 100 

e-t B4 12 19 11 16 380 70 

e-t C4 9 18 10 15 240 60 
1TRANS = Transportation. 2MH = material handling, loading, unloading. 3GT = garbage truck. 4e-T = e-truck for general transportation purposes. 

The mentioned results next to further details mentioned in [S9] show that by using oil-based energy 

generation sources, 88% emission reduction can be reached. These reduced rates in the case of the 

same scenario taking other energy generation sources, like coal, photovoltaic, wind, or water into 

account. Therefore, adoption of e-vehicles in city logistics solutions appears to be progressing faster 

than expected. City logistics processes based on e-vehicles lead to decreased fuel consumption and 

emission, while the availability and flexibility can be increased. Energy efficiency, sustainability, and 

emission reduction have been extensively researched in all fields of logistics. Also, the transformation 

of conventional city logistics solutions into an e-vehicle based multi-echelon supply chain 

significantly decreases energy consumption and emission, while service level and flexibility are likely 

to be increased. Depending on the source of electric energy generation, different emission reductions 

can be realized.  

As a managerial impact, the application of the above-described methodology can support managerial 

decisions regarding the logistics center, the adoption of various e-vehicles, and micro-mobility 

vehicles, or the operation strategy of the whole supply chain. I can summarize the conclusions and 

research implications as follows: 

The development of new city logistics solutions must be based on the performance evaluation of 

available conventional systems. A new methodology was developed for the evaluation of 

conventional city logistics solutions to calculate time-, distance-, energy consumption-, and emission-

related performance parameters. 

Designing and operating sustainable city logistics systems are great challenges for researchers 

because of the complexity of city logistics solutions, especially in the case of CPSs led to NP-hard 

optimization problems, where the application of heuristic and metaheuristic solutions is unavoidable. 

A mathematical model was developed to support the design and optimization of a multi-echelon city 

logistics solution. The model takes capacity, timeliness, suitability, availability, and energy-related 

constraints into consideration. 

The comparison and the computational results of conventional and multi-echelon e-vehicle-based city 

logistics solutions show that the multi-level supply chain and the application of e-vehicles have a 

great impact on costs, energy efficiency, emission, and service level. The emission rates are based on 

well-to-wheel analysis, where the production and transportation of primary fuel, production and 

transportation, and road fuel are taken into consideration [S9]. 

3.5. CPS for waste management focusing on energy efficiency and sustainability  

3.5.1. Introduction 

Using a multi-echelon system in city logistics creates an advantage by raising the efficiency of 

distribution tasks [S8]. A further step is taken for a two-echelon cyber-physical waste collection 
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system as illustrated in Figure 15. The collection and transfer station is the connection point between 

the two echelons. The first echelon starts from the smart waste bins that provide real-time waste 

amounts using the IoT to the collection and transfer station where the waste is stored, organized, 

and/or separated. This station gives the system the required flexibility by identifying its task and 

location depending on the situation being tackled. The smart bin’s sensor is represented by the colors 

green, orange, and red depending on the waste percentage. Green means the percentage is higher than 

50%, orange means the percentage is higher than 70%, and red means the percentage is higher than 

90%. The second echelon starts from the collection and transfer station to the treatment facility, where 

the waste is processed. The treatment facility varies from landfilling to other types such as recycling, 

dismantling, or incineration. The system components for waste collection, transportation, and 

treatment are directly connected to cyber management, where data is stored, and computing processes 

are executed.  

 

Figure 15: Cyber-physical waste management system scheme 

Many collection and transfer stations may exist in the system depending on the urban area as each 

station covers a relatively small area. In a small urban area, it is possible to have one collection and 

transfer station. Each station's location and tasks are adjustable based on the specific case. For 

instance, waste trucks can park in that station, so it would be their start-off location. Figure 17 shows 

the information and waste flow in the designed system. 
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Figure 16: Information and waste flow 

The collection and transfer station's tasks vary from waste storage to waste separation and/or 

dismantling, which reflects higher flexibility and potential. For instance, it is possible to ignore some 

of the stations depending on the smart waste bins’ percentages and locations when it is more effective 

to do so or due to operational needs. This first echelon is tackled in detail within with the 

implementation of collecting waste up to the collection and transfer station. All bins with a waste 

percentage of less than 50% were ignored. The waste collection process was also carried out in a 

specific time span. The routes and time taken were calculated using Open Route Service, which was 

developed by HeiGIT gGmbH [137]. It gives the required real distances and time in which vehicles 

move between given locations. 

3.5.2. Developed mathematical modeling 

The vehicle routing problem (VRP) addresses the operation of serving a set of customers in reduced 

travel distance routes by starting in and returning to the same location [138]. The VRP is also known 

as the node routing problem (NRP), and it has been the focus of much research attention in many 

applications, including but not limited to waste collection. However, some researchers consider the 

waste collection problem to be an arc routing problem (ARP). The main difference is that in the arc 

routing problem, the focus is on the routes instead of nodes because the vehicle/vehicles carry out the 

service while traversing the routes. In other words, in the waste collection problem, from an arc point 

of view, the customers are located along the routes, not at the nodes [139]. However, this was not the 

case here, since there was a specific set of smart bins with known locations that should have been 

serviced/emptied; hence, the VRP model was chosen. Moreover, in certain cases, the density of the 

points along a street is so large that the natural way to approach the corresponding routing problem 

is to adopt the ARP instead of the VRP [140]. Such cases did not apply here, where the locations of 

the bins were sparsely scattered around the city. 

The capacitated vehicle routing problem (CVRP) is an extension of the VRP with capacity 

constraints. The CVRP in solid waste collection is defined as collecting waste from a set of bins by a 

homogeneous or heterogeneous fleet of trucks with fixed capacities that cannot be violated; each of 

them starts from and returns to the same point [141]. The CVRP model is explained below, where 𝑛 

is the number of smart bins and 𝑚 is the number of trucks, with the set of homogeneous trucks defined 

as 𝐾 = {1, 2, … , 𝑚}, each of which is initially stationed at the collection and transfer station. The 

index set 𝐼 = {1,2, … , 𝑛} corresponds to the smart bins, where 𝑖, 𝑗 ∈ 𝐼, and 𝑖 = 0 corresponds to the 

start point location. Each smart bin contains a non-negative waste quantity 𝑞𝑖, and a non-negative 

value 𝐷𝑖𝑗 represents the real distance from bin 𝑖 to bin 𝑗, where 𝑖 ≠ 𝑗. 
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The CVRP model considered both the capacity of the trucks and the smart bins, where: 

• 𝐶 represents the maximum waste capacity that each of the trucks can transport along their 

specified routes. 

• 𝑄 represents the maximum waste capacity that can be carried by the truck's mounted crane 

during material handling operations. 

• 𝑞𝑚𝑎𝑥 refers to the maximum capacity that each smart bin can hold. 

• Additionally, the model also imposes a time limit, where: 

• 𝑇𝑚𝑎𝑥 represents the maximum allocated time for the whole waste collection process. 

• 𝑡𝑘 corresponds to the time taken by truck k to complete its assigned route and return to the 

collection and transfer station. 

The objective function is to minimize the total energy consumption (TE) of the used trucks in kWh 

during the waste collection and transportation, which is calculated depending on the route length, 

required material handling operations (waste loading), and specific fuel consumption rate [S9]. The 

model includes two decision variables. First, 𝑋𝑖𝑗𝑘 is defined as 1 if vehicle 𝑘 moves from bin 𝑖 to bin 

𝑗; otherwise, it is 0. Second, 𝑌𝑖𝑘 is defined as 1 if bin 𝑖 belongs to the route of vehicle 𝑘; otherwise, it 

is 0. 

The total energy function is expressed as follows: 

TE =  𝐸𝑇 + 𝐸𝑀𝐻  (32) 

where 𝐸𝑇 is the energy consumption of the transportation process and 𝐸𝑀𝐻 is the energy consumption 

of material handling (waste loading) operations at the bins’ locations. The energy consumption of the 

transportation process is: 
𝐸𝑇 =  ∑ ∑ ∑ 𝐷𝑖𝑗  𝑋𝑖𝑗𝑘  𝑐𝑖,𝑘

𝐹𝑇𝑚
𝑘=1

𝑛
𝑗=1

𝑛
𝑖=0 . (33) 

where 𝑐𝑖,𝑘
𝐹𝑇 is the specific fuel consumption of the transportation process that is calculated as: 

𝑐𝑖,𝑘
𝐹𝑇 = 𝑐𝑘𝑚𝑖𝑛

𝐹𝑇 + ((𝑐𝑘𝑚𝑎𝑥
𝐹𝑇 − 𝑐𝑘𝑚𝑖𝑛

𝐹𝑇 ) 𝑐𝑘𝑚𝑎𝑥
𝐹𝑇⁄ )𝑞𝑖𝑘/((𝑞𝑖𝑘 𝑐𝑘𝑚𝑎𝑥

𝐹𝑇⁄ ) +  𝐶 − 𝑞𝑖𝑘)  (34) 

where 𝑐𝑘𝑚𝑖𝑛
𝐹𝑇  and 𝑐𝑘𝑚𝑎𝑥

𝐹𝑇  are the lower and upper bounds of the specific fuel consumption of 

transportation depending on the loading waste weight, and 𝑞𝑖𝑘 represents truck 𝑘 waste load after 

moving from bin 𝑖. 
The energy consumption of the waste loading operations performed by the truck's mounted crane is 

given by: 
𝐸𝑀𝐻 =  ∑ ∑ 𝑐𝑖,𝑘

𝐹𝑀𝐻𝑚
𝑘=1

𝑛
𝑖=1   (35) 

where 𝑐𝑖,𝑘
𝐹𝑀𝐻 is the specific fuel consumption of material handling operations that is calculated as: 

𝑐𝑖,𝑘
𝐹𝑀𝐻 = 𝑐𝑘𝑚𝑖𝑛

𝐹𝑀𝐻 + ((𝑐𝑘𝑚𝑎𝑥
𝐹𝑀𝐻 − 𝑐𝑘𝑚𝑖𝑛

𝐹𝑀𝐻 ) 𝑐𝑘𝑚𝑎𝑥
𝐹𝑀𝐻⁄ )𝑞𝑖/((𝑞𝑖 𝑐𝑘𝑚𝑎𝑥

𝐹𝑀𝐻⁄ ) + 𝑄 − 𝑞𝑖)  (36) 

where 𝑐𝑘𝑚𝑖𝑛
𝐹𝑀𝐻  and 𝑐𝑘𝑚𝑎𝑥

𝐹𝑀𝐻  are the lower and upper bounds of the specific fuel consumption of material 

handling operations depending on the loading waste weight, and 𝑞𝑖 is the waste quantity of bin 𝑖. 
The optimization model, which aims to minimize the total energy consumption, is described in 

Equation (37) and is formulated as follows: 
𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  (𝐸𝑇 + 𝐸𝑀𝐻) (37) 

Subject to the following constraints: 
∑ ∑ 𝑋0𝑗𝑘

𝑚
𝑘=1

𝑛
𝑗=1 = 1  (38) 

∑ 𝑞0𝑗𝑘 = 0  ∀𝑘 ∈ 𝐾𝑛
𝑗=1   (39) 

∑ ∑ 𝑋𝑖𝑗𝑘 = 1 𝑚
𝑘=1

𝑛
𝑖=0 ∀𝑗 ∈ I. (40) 

∑ 𝑋𝑖𝑗𝑘  𝑛
𝑗=1 = ∑ 𝑋𝑗𝑖𝑘  𝑛

𝑗=1 =  𝑌𝑖𝑘   ∀𝑖 ∈ 𝐼;  𝑘 ∈ 𝐾. (41) 
∑ ∑ 𝑞𝑗𝑖𝑘 − ∑ ∑ 𝑞𝑖𝑗𝑘

𝑚
𝑘=1

𝑛
𝑖=0 = 𝑐𝑗  𝑚

𝑘=1
𝑛
𝑖=0 ∀𝑗 ∈ 𝐼. (42) 

∑ 𝑐𝑖𝑋𝑖𝑗𝑘 ≤ 𝐶  ∀𝑗 ∈ 𝐼;  𝑘 ∈ 𝐾𝑛
𝑖=1 . (43) 

∑ ∑ 𝑋𝑖0𝑘
𝑚
𝑘=1

𝑛
𝑖=1 = 1. (44) 

∑ 𝑞𝑖 ≤ 0.9 ∑ 𝐶𝑘
𝑚
𝑘=1

𝑛
𝑖=1 . (45) 

𝑚𝑎𝑥(𝑡1, 𝑡2, … 𝑡𝑚) <  𝑇𝑚𝑎𝑥. (46) 
100 𝑞𝑖 𝑞𝑚𝑎𝑥⁄ ≥ 50 ∀ 𝑖 ∈ 𝐼. (47) 
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where 𝑞𝑖𝑗𝑘 represents the waste load amount picked up by truck 𝑘 when moving from bin 𝑖 to bin 𝑗. 

Equations (38) and (39) specify that truck 𝑘 starts the tour from the start point carrying no load. 

Equation (40) states that each bin is visited by only one vehicle. Equation (41) ensures the continuity 

condition. Equation (42) ensures that the vehicle empties the visited bins. Equation (43) shows that 

the total collected waste from all visited bins in a tour must not exceed the vehicle capacity. After the 

tour, the truck returns to the depot according to Equation (44). Equation (45) states that the total waste 

amount of the aimed smart bins is less than the total capacity of the used trucks. Equation (46) ensures 

that the time taken by all trucks does not exceed the total time span allocated for the waste collection 

process. Equation (47) states that all the considered bins for waste collection have a waste amount 

equal to or larger than 50%. 

3.6. VIII district Budapest case study  

This case study has two scenarios of thirty and twenty smart bins in the VIII District in Budapest 

were considered to validate the mathematical model. The optimized energy consumption of the total 

used vehicles was calculated based on actual routes in kWh. The optimized solutions were calculated 

using three metaheuristic algorithms: GA, PSO, and SA. The solutions are compared with a random 

solution to outline their effectiveness. Assumed the used trucks complied with Euro VI European 

emission standards. The used values are mentioned in Table 9 to calculate the accrued emissions of 

CO, NMHC, CH4, NOx, and PM for Euro VI under the WHSC test for heavy-duty and transit testing 

[142] in g/kWh depending on energy consumption. 

Table 9: EU VI emission standards for heavy-duty and transit testing in g/kWh 

CO NMHC CH4 NOx PM 

4 0.16 0.5 0.46 0.01 

The lower and upper bounds are considered of the specific fuel consumption of transportation and 

the lower and upper bounds of specific material handling, for an average speed of 25 km/h. The values 

are shown in Table 10. Each bin’s capacity was 100 kg. The maximum allocated time span 𝑇𝑚𝑎𝑥 = 3 

hours. 

Table 10: Truck specifications 

𝒄𝒌𝒎𝒊𝒏
𝑭𝑻  𝒄𝒌𝒎𝒂𝒙

𝑭𝑻  𝒄𝒌𝒎𝒊𝒏
𝑭𝑴𝑯  𝒄𝒌𝒎𝒂𝒙

𝑭𝑴𝑯  𝑸 

41 kWh/km 52 kWh/km 25 kWh 37 kWh 200 kg 

To obtain the smart bins’ location data, two geographical locations were chosen. These two locations 

served as geographical boundaries for the generation of location data within the area of study in 

Budapest. The distance between those two locations, which would be the diameter, was calculated 

using the Haversine formula. Additionally, the central location along the segment between the two 

boundaries was also calculated; hence, a circle/ellipse was formed. The locations were then randomly 

generated within the circle boundary. The random locations were generated from a uniform 

distribution. All the locations were checked on the map to ensure that they represented convenient 

locations, and some of them were manually adjusted. The waste values for each smart bin were also 

randomly generated following a uniform distribution. Smart bins’ locations and waste amounts are 

shown in Table 11. 

Table 11: Bins’ locations and waste amounts 

ID Latitude Longitude Waste Amount 

0 47.487448 19.105228 - 

1 47.483984 19.085934 98 kg 

2 47.492993 19.078542 75 kg 

3 47.497693 19.072976 66 kg 

4 47.48618 19.092511 70 kg 

5 47.491468 19.087551 99 kg 
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6 47.493208 19.085197 79 kg 

7 47.488254 19.080151 67 kg 

8 47.49816 19.077611 97 kg 

9 47.489349 19.087007 73 kg 

10 47.485646 19.08784 66 kg 

11 47.496471 19.072441 94 kg 

12 47.49282 19.085386 78 kg 

13 47.490987 19.085437 72 kg 

14 47.482154 19.09956 75 kg 

15 47.488997 19.084106 54 kg 

16 47.483539 19.077086 65 kg 

17 47.494968 19.071751 69 kg 

18 47.486889 19.080102 89 kg 

19 47.487093 19.088391 91 kg 

20 47.496417 19.072926 90 kg 

21 47.478491 19.091825 56 kg 

22 47.479669 19.088727 83 kg 

23 47.495945 19.08181 68 kg 

24 47.487821 19.075307 96 kg 

25 47.486882 19.071569 92 kg 

26 47.485501 19.072039 93 kg 

27 47.488094 19.084196 57 kg 

28 47.489819 19.082287 64 kg 

29 47.494475 19.071527 66 kg 

30 47.48275 19.07939 90 kg 

Regarding the parameters used for the implementation of the algorithms, in the case of GA 

optimization, the number of iterations was 600, cross over probability pc was 1, mutation probability 

pm was 0.08, population size was 300, elite size was 40, and the selection methods were fitness 

proportionate selection, the reverse sequence mutation method, and the ordered cross over method. 

In the case of PSO, the number of iterations was 500, the number of particles was 400, c2 was 0.1, 

and c1 was 0.9. In the case of SA, the number of iterations was 3000, the starting temperature was 

140, the stopping temperature was 10−12, and the temperature cooling rate α was 0.991. 

3.6.1. First scenario of thirty smart bins in Budapest 

The execution time, the total consumed energy, and the total distances for this case are summarized 

in Table 12. The results were calculated using the three algorithms next to a random solution "RS" 

without optimization. 

Table 12: Execution results of the case of thirty bins 

 Execution Time (s) Total Energy (kWh) Total Distance (km) 

GA 17.5616664 1766.8860 24.19838 

PSO 25.9850608 1765.9722 24.16504 

SA 0.7237922 1958.02908 28.75177 

RS ̶ 3176.2595 58.3101 

Figures 17, 18, 19 show the total energy consumed by the three trucks for each iteration. 
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Figure 17: Total energy consumed by the three trucks (GA) 

 
Figure 18: Total energy consumed by the three trucks (PSO) 

 
Figure 19: Total energy consumed by the three trucks (SA) 

Figures 20, 21, 22 show the actual routes taken by the three trucks when using the three algorithms 

next to a random solution without optimization. The black location represents the collection and 

transfer location. Green, orange, and red locations represent the smart bins with the waste percentage. 

The three trucks’ lines are represented by blue, red, and black colors. 
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Figure 20: Actual routes when using GA 

 
Figure 21: Actual routes when using PSO 
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Figure 22: Actual routes when using SA 

 
Figure 23: Total energy and emissions of the case of thirty bins 

 
Figure 24: Actual routes when using a random solution 
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Table 13: Estimated accrued emissions in g of the case of thirty bins 

 CO NMHC CH4 NOx PM Total 

GA 7067.5 282.70 282.70 282.70 282.70 8198.4 

PSO 7063.9 282.56 282.56 282.56 282.56 8194.1 

SA 7832.1 313.28 313.28 313.28 313.28 9085.2 

RS 12705 508.20 508.20 508.20 508.20 14738 

The random solution in Figure 24 shows many overlaps in the routes, which reflects the causes of its 

increase in results compared to the optimized results. Table 13 shows the estimated accrued 

emissions. Additionally, Figure 23 shows the total energy and emissions of the three optimized results 

and the random solution. Among the three algorithms, GA demonstrated the best results. It achieved 

a 44.4% reduction in total consumed energy and emissions and a 58.5% decrease in the total distance 

compared to the random solution. PSO showed a similar reduction of 44.4% of total consumed energy 

and emissions and a 58.7% decrease in the total distance compared to the random solution. Although 

both GA and PSO achieved a similar reduction in consumed energy and emissions, GA was 

computationally faster; it saved a third of the total execution time. SA demonstrated a 38.4% 

reduction in total consumed energy and emissions and a 50.7% decrease in the total distance 

compared to the random solution. However, SA was much faster than both GA and PSO. In 

conclusion, GA achieved the best results, while SA achieved less optimized results with the shortest 

execution time. 

3.6.2. Second scenario of twenty smart bins in Budapest 

The execution time, the total consumed energy, and the total distances for this case are summarized 

in Table 14. Also, Table 15 shows the estimated accrued emissions.  

Table 14: Execution results 

 Ex. Time (s) Total Energy (kWh) Total Distance (Km) 

GA 14.4321162 1188.3266 16.4887 

PSO 6.459 1190.7251 16.5891 

SA 0.2832 1311.2013 19.4575 

RS ̶ 1974.3287 35.5153 

Table 15: Estimated accrued emissions in g of the case of twenty bins 

 CO NMHC CH4 NOx PM Total 

GA 4753.3 190.1 594.2 546.6 11.88 6096.1 

PSO 4762.9 190.5 595.4 547.7 11.91 6108.4 

SA 5244.8 209.8 655.6 603.2 13.11 6726.5 

RS 7897.3 315.9 987.2 908.2 19.74 10128 

 

Figure 25: Total energy and emissions of the case of twenty bins 
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Figure 25 shows the total energy and emissions results. Like the first scenario, both GA and PSO 

achieved the best results in minimizing the total energy and emissions, with 39.8% and 39.7% 

decreases in total consumed energy and emissions compared to the random solution, respectively. 

Additionally, 53.6% and 53.3% decreases in total distance were shown compared to the random 

solution. SA showed a decrease of 33.59% in total consumed energy and emissions compared to the 

random solution and a decrease of 45.2% in total distance compared to the random solution. 

Moreover, SA was much faster in terms of execution time than both PSO and GA. 

While the three algorithms showed great results in optimizing energy efficiency and raising 

sustainability, there was evident variation in the execution time in favor of SA. Therefore, SA is 

recommended to be used in situations where time efficiency is essential. Its speed of execution can 

be attributed to its simplicity. GA and PSO showed more optimized results than SA. The execution 

time was the longest in PSO in the first case, while it was the longest in GA in the second case. This 

difference may be explained due to the case's data size. It is important to consider this, because it is 

possible to have a huge increase in the execution time for PSO in cases with big data sizes.  

The designed system encompassed the following aspects: the IoT, smart bins with multi-percentage 

sensors, data and information analysis, vehicles’ actual routes, energy and emissions optimization, 

multi-echelon system, time windows, and flexibility. The system’s flexibility was demonstrated 

through the dynamic nature of the collection and transfer station's tasks based on the given situation. 

For instance, this station can be used as a waste separation center. Using the actual routes made the 

results more realistic and factual than the traditional direct lines. However, using case studies with a 

bigger number of smart bins seems promising to gain more reliable results. For instance, there was a 

big difference in the PSO execution time between the two cases.  

This chapter included the main contribution to Theses 2 and 3.   

Thesis 2: After an analysis was done based on real data for waste management in Europe generally 

and Hungary specifically, a proposed CPS for waste collection was presented with details about its 

parts and processes from the logistics point of view. As there is no available one found, a conventional 

city logistics solution was presented and described with its mathematical modeling to have it as a 

reference baseline. Then, a multi-echelon collection and distribution optimization system was 

described and detailed. A numerical analysis was used to compare the two systems and clarify their 

effectiveness. The optimization aimed at scheduling, assignment, routing layout design, and 

controlling tasks that focus on time, distance, energy consumption, and emission-related objective 

functions. Also, it focused on an e-vehicle-based solution, where the efficiency of the whole system 

could be increased by using existing Industry 4.0 technologies, like smart devices, radiofrequency 

identification, digital twin solutions, and cloud and fog computing to solve big data problems of large-

scale system including a wide range of users, transportation resources and goods. [S7, S8, S9]. 

 

Thesis 3: CPS for waste management focusing on energy efficiency and sustainability was presented 

and discussed. The developed mathematical modeling was described. Also, a case study in the VIII 

district in Budapest was used to validate the system for two scenarios of thirty and twenty smart bins. 

The designed system encompassed the following aspects: IoT, smart bins with multi-percentage 

sensors, data and information analysis, vehicles’ actual routes, energy and emissions optimization, 

multi-echelon system, time windows, and flexibility. The system’s flexibility was demonstrated 

through the dynamic nature of the collection and transfer station's tasks based on the given situation. 

[S2, S4, S6]. 
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4. ENERGY EFFICIENCY OPTIMIZATION OF LAST MILE SUPPLY SYSTEM 

This chapter discusses and shows the research direction of last mile supply system with RL 

consideration. This research started with a case study in Miskolc city center where VRP problem was 

optimized by three algorithms next to a random route that is used as a comparison reference. Then, a 

second case study in Kosice city center to validate a capacitive collection system using five 

algorithms. After that, as a next step, a last mile supply optimization system with RL consideration is 

presented and described. The developed system's mathematical modelling is detailed. A case study 

in VII District in Budapest is used to validate the model. GA was used for the optimization with 

upgrade that was described. The achieved results of this chapter were published mainly in three 

articles [S4, S5, S10]. 

4.1. Miskolc case-study for vehicle routing problem  

As a case study application to solve a TSP problem by the mentioned algorithms, twenty locations in 

Miskolc city center were used for finding the shortest route to visit all of them while starting and 

ending in a specific location. Three algorithms are used to find the optimized results next to a random 

route that is used as a comparison reference. The real routes are calculated by using the Open Route 

Service that was developed by HeiGIT gGmbH [137]. It gives the required real distances for vehicles 

to move among given locations. Table 16 states the used location in Miskolc city center where the ID 

0 states the route start- and endpoint.  

Table 16: Miskolc case study locations 

ID Latitude Longitude ID Latitude Longitude 

0 48.104500 20.792322 11 48.100542 20.789675 

1 48.102439 20.788955 12 48.102063 20.789383 

2 48.101865 20.787420 13 48.102104 20.790459 

3 48.101852 20.786693 14 48.103304 20.791231 

4 48.101265 20.786310 15 48.103188 20.793006 

5 48.100182 20.787304 16 48.104120 20.794390 

6 48.098837 20.786294 17 48.105830 20.793720 

7 48.098384 20.786947 18 48.105156 20.785587 

8 48.098272 20.788453 19 48.106049 20.787717 

9 48.100108 20.788731 20 48.105392 20.786827 

10 48.100719 20.788667 — — — 

The results of the optimization are mentioned in Table 17. PSO achieved the shortest route then GA 

with a very near result to PSO than SA as a less optimized result among the three algorithms. PSO 

achieved a 69.3% save of the random route, GA achieved a 68.4% save, and SA achieved a 57.9% 

save. The results reflect the importance of using optimization for its effectiveness in reducing the 

required route. Moreover, the results are compatible with the obtained benchmarks in chapter 2. 

Table 17: Miskolc case study results 

 GA PSO SA Random route 

Shortest route (km) 6.14917 5.97373 8.20097 19.46269 

Shortest route time (min) 17.33216 16.91766 22.8899 49.6466 

Code Exec. time (s) 5.0876 4.09234 0.28272 — 

% Saved route 68.4 % 69.3 % 57.9 % — 
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The following Figures 26, 27, 28, 29 show the real route maps for the three algorithms next to a 

random route. Also, Figures 30, 31, 32 show the optimization curve for distance with the iteration 

progress for three algorithms. 

 

Figure   26 : Actual route map for GA optimization 

 

Figure   27 : Actual route map for PSO optimization 
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Figure   28 : Actual route map for SA optimization 

 

Figure   29 : Actual route map for random route 
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Figure   30 : GA optimization curve for distance and iterations 

 

Figure   31 : PSO optimization curve for distance and iterations 

 

Figure   32 : SA optimization curve for distance and iterations 
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The presented case in Miskolc city center where twenty locations should be visited as a TSP 

explained, in numbers, the three algorithms' effectiveness. By comparing them with the random route, 

long distances were saved up to 68.4%. Especially in the current energy crisis, the results gain an 

important effect on distance and energy savings. The distance optimization progress for every 

iteration was presented as a curve for the three algorithms. GA reached the optimized result in 

iteration number 300 while PSO reached it in iteration number 110 approximately. SA needed more 

than 800 iterations to reach the best result with a noticeable vibration curve in its first third, which is 

explained by the nature of the SA algorithm. PSO showed the best results then GA with relatively 

near values then SA. The results reflect the importance of using optimization algorithms because of 

their effectiveness in reducing the required distance and energy. On the other hand, SA was the fastest 

in the average execution time then PSO then GA. In conclusion, this confirms the optimization 

algorithms' importance and effeteness within a relatively short time. 

4.2. Kosice case-study for capacitive collection system  

To address the mentioned applications using optimization methods, as a case study, thirty locations 

were picked randomly in the city center of Kosice to find the shortest route to traverse all of them 

with a constraint to start and end at the same location, taking into consideration selecting the locations 

in the residential areas or with a population activity and not an industrial area, which mimics real 

delivery points. NN algorithm serves as the baseline reference algorithm to compare the results of the 

four algorithms against it. The real routes are calculated by utilizing the Open Route Service that was 

developed by HeiGIT gGmbH [137]. It gives the best real path between two required locations by 

vehicles to traverse depending on the real directions of the streets if they are in one or two directions, 

travel speeds are dynamic, which are changed based country specific speed limits, different way 

types, and surfaces of the road to consider reduced speeds in residential areas, or when entering a 

roundabout. Table 18 lists the used locations in Kosice city center where the ID 0 states the location 

where the truck starts from and ends after finishing its route. The mentioned weight for each location 

that is used for the second application where three trucks are used with a capacity limit. The weight 

defines a constraint that cannot be exceeded by each truck for the total weight of the visited locations. 

In addition, there is a weight limit, which represents the maximum weight available per order at each 

location. 

Figure 33 shows the adopted model for a goods' supply system that uses several trucks referred to as 

i that visit the locations and go back to the start point. The trucks distribute the goods to the locations. 

The utilized IoT tools in the trucks allow the information flow into the cyber management that deals 

with data to find the best routes. The following constraints are considered: truck maximum limit of 

goods, total collected goods for each truck, trucks' flexibility (fewer differences in the total carried 

goods between the trucks), one/two ways consideration, and real routes' distances calculation instead 

of the traditional way of calculating direct lines between the locations. 



 ENERGY EFFICIENCY OPTIMIZATION OF LAST MILE SUPPLY SYSTEM 

49 

 

Figure 33: Used model in the case study 

Table 18: used locations in Kosice city center 

GA, PSO, ACO, and SA algorithms with the NN algorithm are used to determine the optimization 

outcomes for the two TSP and MTSP applications that were addressed. Table 19 shows the outcomes 

of the first application, which employed one vehicle with no capacity restrictions. The outcomes of 

the second application are presented in Table 20, which used three trucks and had a capacity limit of 

400 (units) per truck.  

Table 19: First case study application results 

 SA PSO GA ACO NN 

Execution time (s) 1.2876 29.98697 13.22961 18.6166 0.0002548 

Distance (km) 64.032 67.03403 63.19393 63.2252 68.0736 

ID Latitude Longitude weight ID Latitude Longitude Weight 

0 48.688953 21.223432 - 16 48.68028510240033 21.274614769106996 6 

1 48.73099254232587 21.225416574853625 52 17 48.67249541221792 21.269268186388043 44 

2 48.726430241598855 21.223333614224675 46 18 48.66964229942875 21.270384851937244 10 

3 48.712236438645114 21.205961538692634 43 19 48.72618966091185 21.26371791656911 33 

4 48.708578969436836 21.222205381898544 21 20 48.72608570392025 21.2545644458204 11 

5 48.67896714440343 21.271184198394813 18 21 48.72963336750223 21.24843739224237 28 

6 48.68280129899581 21.283325920238244 5 22 48.73758588813169 21.25215327136872 34 

7 48.72645173037964 21.278077576394676 70 23 48.73781050486706 21.259699675371184 87 

8 48.72809459393173 21.278314107283933 45 24 48.73928005290904 21.263319365903175 51 

9 48.7347425760872 21.270281177615896 29 25 48.706544326779955 21.25400114199683 5 

10 48.73696701680051 21.265850915239092 58 26 48.71294314930677 21.25312922256893 53 

11 48.75220261409178 21.272692097785423 7 27 48.71359894495363 21.247729090533333 9 

12 48.72892199502447 21.23470474502146 59 28 48.70495193565775 21.250230913210387 48 

13 48.71963042569478 21.24769334276912 48 29 48.70179290123074 21.259369323956705 51 

14 48.70814938151528 21.262052881190222 75 30 48.72520773942602 21.230843983322842 36 

15 48.70276649110591 21.25961425715763 54 Total - - 1136 
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Table 20: Second case study application results 

 SA PSO GA ACO NN 

Execution time (s) 1.4088 37.28983 22.01450 17.9311 0.0004077 

Total distance (km) 93.425 93.09157 88.29585 93.8455 100.0768 

Figure 34 illustrates a comparison of the calculated distances in the two applications by the used four 

algorithms next to the NN.     

 

Figure   34 : Algorithms' results comparison 

While NN showed the longest distance in the two applications, it was the fastest in execution time. 

Among the other 4 applied algorithms, in the first application, GA showed the shortest distance, then 

ACO with very near result, then SA and PSO. The results were near in general, and this is expected 

since this first application shows a simple case of one truck without capacity constraints. In the second 

application, where more constraints were applied, GA showed the shortest distance then the other 

three algorithms ACO, SA, and PSO with very near results.  

 

Figure 35: First application-optimized route by NN 
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Figure   36 : First application-optimized route by GA 

Figures 35 and 36 depict the optimized routes by NN and GA algorithms over the 30 locations in the 

first application. The maps show the real routes at the city center of Kosice city. The black location 

represents location 0 where the truck starts from and ends after finishing its trip. Also, Figures 37, 38 

depict the optimized routes by NN and GA algorithms over the 30 locations in the second application. 

Blue, black, and red colors represent the three truck routes while the black location represents location 

0.  

 

Figure 37: Second application-optimized route by NN 
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Figure   38 : Second application-optimized route by GA 

This case study shows that all chosen algorithms achieved better results than the standard NN 

algorithm. GA achieved the shortest route distance compared to ACO, PSO, and SA in both 

applications. However, the best execution time among the four algorithms in total was in SA. The 

results reflect the importance of using metaheuristic optimization due to its effectiveness in reducing 

the total distance for the required route in a short time. Moreover, the results are somewhat compatible 

with the benchmarks obtained in the last chapter. One may argue that the optimization findings are 

not very significant because the distance in GA indicated a 13% and 10% saving over NN, in the two 

applications respectively. However, the optimization's goal and the definition of the application 

should determine the desired benefit of which algorithm to use. Therefore, the two used applications 

show how making the application more complicated may reflect on the optimization results. The 

adopted IoT tools allowed applying the constraints of vehicle maximum limit of goods, total collected 

goods for each vehicle, vehicles' flexibility, one/two ways consideration, and real routes' distances 

calculation. According to the results, GA is the advised algorithm to use, because it showed stable 

optimization effectiveness in both applications in contrast to the other algorithms.      

4.3. Last mile supply optimization system with RL consideration 

The last mile transportation system expresses the operations that take place under the city logistics 

aspect. While the goods storage station represents the last echelon of where the goods are to be 

delivered to the specified locations, RL also happens to be collected from specified locations to be 

moved to the goods storage station. This system is represented as a scheme in Figure 39. Routes and 

consumed time are calculated depending on Open Route Service, which gives real distances and time. 

This service was developed by HeiGIT gGmbH [137]. 
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Figure 39: Last mile supply system scheme 

The locations express both types of goods' delivery and collection. It shows how RL operations were 

integrated into the supply system. Cyber management expresses the cloud system where the data is 

stored, analyzed, and calculated. Therefore, information flow is considered between the cyber 

management and IoT tools within the system parts such as the trucks and goods storage station. GA 

is used in this system to calculate the optimized energy efficiency solutions for doing the goods' 

delivery/collection. Also, an upgrade step is used regarding the iteration number. Instead of raising 

the iteration number to reach better results, three runs are done, and the best value will be selected as 

the optimized result. The optimization is represented in Figure 40 next to the used locations’ order 

coding for 2 trucks case that is applied in the coming case study. After the separation of the two 

trucks' location orders, the locations will be reordered separately considering that location 0 is the 

start and end location for both trucks. Therefore, the last location is transferred into 0 after separating 

the two locations' orders. This process is illustrated in Figure 40, which is more detailed in the coming 

mathematical modeling.  

 

Figure 40: GA optimization methodology 
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4.4. Developed system's mathematical modelling 

In the VRP, it is worked on finding the shortest travel distance roads with starting in and returning to 

the same place for serving a group of customers  [138]. The VRP has been applied in various 

applications, including but not bounded to city logistics goods' delivery and collection. The used 

model is explained below, where 𝑛 is the visited locations' number and 𝑚 is the used trucks' number 

by homogeneous trucks that are defined as 𝐾 = {1, 2, … , 𝑚}, the mentioned trucks are stationed at 

the goods storage station at the beginning. The index set 𝐼 = {0,1,2, … , 𝑛} refers to the locations, 

where 𝑖, 𝑗 ∈ 𝐼. 𝑖 = 0 refers to the goods storage station location. For each location, there is 𝑞𝑖 goods' 

quantity that should be delivered/collected. The positive value refers to the delivery task while the 

negative value refers to the collection task. 𝐷𝑖𝑗 refers to the real road distance from location 𝑖 to 

location 𝑗, where 𝑖 ≠ 𝑗, and it should non-negative value. 

The following model considers the capacity of both the trucks and the goods, where: 

• 𝐶 refers to the maximum goods' amount that is possible for the trucks to transport. 

• 𝑞𝑚𝑎𝑥 refers to the maximum goods' amount in each location that is possible to be tackled. 

Additionally, the model presents a time limit as well, where: 

• 𝑇𝑚𝑎𝑥 refers to the maximum specified time for the whole process. 

• 𝑡𝑘 refers to the time that is taken by truck k to finish its route and go back to the start location. 

The total energy consumption (TE) is the defined objective function where it aims to be minimized. 

It refers to the spent kWh by the used trucks during the goods delivery/collection system, which is 

found depending on the distance length, and specific fuel consumption rate [S9]. The following 

mathematical modeling is developed to tackle the described system (Figure 39) based on previous 

chapter [S2] that tackled a waste management system. This modeling has two decision variables. 𝑋𝑖𝑗𝑘 

that is 1 if vehicle 𝑘 proceeds from location 𝑖 to location 𝑗; otherwise, it is 0. 𝑌𝑖𝑘 that is 1 if location 𝑖 
is part of the vehicle 𝑘 route; otherwise, it is 0. 

The objective function is described as: 

TE =  ∑ ∑ ∑ 𝑋𝑖𝑗𝑘 . 𝐷𝑖𝑗. 𝑐𝑖𝑗𝑘
𝑇  

𝑛

𝑗=1

𝑛

𝑖=0

𝑚

𝑘=1
→ 𝑚𝑖𝑛 (48) 

where 𝐷𝑖𝑗 is the real distance from location 𝑖 to location 𝑗, 𝑋𝑖𝑗𝑘 is the decision variable, 𝑘 is the 

number of trucks, and 𝑐𝑖𝑗𝑘
𝑇  refers to the specific fuel consumption that is defined as 

𝑐𝑖,𝑗,𝑘
𝑇  =  𝑐𝑘𝑚𝑖𝑛

𝑇 + ((𝑐𝑘𝑚𝑎𝑥
𝑇 − 𝑐𝑘𝑚𝑖𝑛

𝑇 ) 𝑐𝑘𝑚𝑎𝑥
𝑇⁄ )𝑞𝑖𝑗𝑘/((𝑞𝑖𝑗𝑘 𝑐𝑘𝑚𝑎𝑥

𝑇⁄ ) +  𝐶 − 𝑞𝑖𝑗𝑘) (49) 

where 𝑐𝑘𝑚𝑖𝑛
𝑇  and 𝑐𝑘𝑚𝑎𝑥

𝑇  refer to the lower and upper bounds within the specific fuel consumption 

depending on the weight of the goods, and 𝑞𝑖𝑗𝑘 represents the weight of the goods picked up by truck 

𝑘 when moving from location 𝑖 to location 𝑗. 

Subject to the following constraints: 
∑ ∑ 𝑋𝑖𝑗𝑘 = 1 𝑚

𝑘=1
𝑛
𝑖=0 ∀𝑗 ∈ I  (50) 

∑ 𝑋𝑖𝑗𝑘  𝑛
𝑗=1 = ∑ 𝑋𝑗𝑖𝑘  𝑛

𝑗=1 =  𝑌𝑖𝑘   ∀𝑖 ∈ 𝐼;  𝑘 ∈ 𝐾  (51) 
∑ ∑ 𝑞𝑗𝑖𝑘 − ∑ ∑ 𝑞𝑖𝑗𝑘

𝑚
𝑘=1

𝑛
𝑖=0 = 𝑐𝑗  𝑚

𝑘=1
𝑛
𝑖=0 ∀𝑗 ∈ 𝐼    (52) 

∑ 𝑐𝑖𝑋𝑖𝑗𝑘 ≤ 𝐶  ∀𝑗 ∈ 𝐼;  𝑘 ∈ 𝐾𝑛
𝑖=1    (53) 

∑ ∑ 𝑋𝑖0𝑘
𝑚
𝑘=1

𝑛
𝑖=1 = 1  (54) 

∑ 𝑞𝑖 ≤ ∑ 𝐶𝑘
𝑚
𝑘=1

𝑛
𝑖=1   (55) 

𝑚𝑎𝑥(𝑡1, 𝑡2, … 𝑡𝑚) <  𝑇𝑚𝑎𝑥  (56) 

Equation (50) ensures that only one vehicle visits every location. Equation (51) states the condition 

of continuity. Equation (52) states that the truck does deliver/collect the goods at the visited location. 

Equation (53) states that the carried goods within the tour should not overrun the capacity of the 

vehicle. After the last location is visited, the truck returns to the goods storage station according to 

equation (54). Equation (55) ensures that the total goods' weight for the allocated locations is less 

than the overall capacity of used trucks. Equation (56) states that the taken time by each truck does 

not exceed the allocated time for the process. 
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4.5. VII District Budapest case study 

For validating the presented mathematical model, a case study that consists of thirty locations in the 

VII District in Budapest is described and analyzed. The actual real routes are used to find the total 

optimized energy consumption of the used trucks in kWh by using the GA metaheuristic algorithm. 

The solutions are to be compared against a random solution for each case to outline the optimization 

efficiency. Within this case, the lower and upper bounds of specific fuel consumption are considered 

the same as the previous ones [S9] while assuming an average speed of 25 km/h in the city center. 

The time window is an essential consideration since there is interaction with customers, moreover, 

electric trucks have limited operational time depending on their battery capacity. Used truck 

specifications are presented in Table 21.  

Table 21: Used truck specifications 

 𝑐𝑘𝑚𝑖𝑛
𝑇  𝑐𝑘𝑚𝑎𝑥

𝑇  𝑞𝑚𝑎𝑥 𝐶 𝑇𝑚𝑎𝑥 

Diesel 20 kWh/km 41 kWh/km 100 kg 600 kg 3 hours 

Electrical 11 kWh/km 18 kWh/km 100 kg 500 kg 2 hours 

For obtaining the locations' data, a generating method was used [S2]. Two geographical locations 

were chosen as geographical boundaries to find the locations' data in the VII District in Budapest. 

The Haversine formula was used to calculate the diameter depending on the distance between those 

two selected locations. Additionally, a circle was shaped depending on the calculation of the centric 

location over the segment amidst the two boundaries. Then, the locations were generated in the circle 

boundary in a random way using a uniform distribution. After that, the generated locations were 

ensured that they represent convenient locations on the map, and a few of them were manually 

adjusted. The goods' weight in every location was generated following a uniform distribution in a 

random way as well. Table 22 shows the goods' weight and their locations. 

Table 22: The goods' weight and their locations 

ID Latitude Longitude Goods' weight (kg) 

0 47.501374 19.093158 - 

1 47.497593 19.055899 33 

2 47.498133 19.057511 -9 

3 47.497602 19.058477 74 

4 47.496396 19.059368 88 

5 47.497686 19.060825 -68 

6 47.498425 19.061217 67 

7 47.500001 19.059982 71 

8 47.499277 19.064749 -17 

9 47.497431 19.067606 1 

10 47.49691 19.068347 20 

11 47.498606 19.069738 52 

12 47.498354 19.073727 -40 

13 47.499479 19.074273 29 

14 47.500382 19.073401 -18 

15 47.504214 19.074972 19 

16 47.502627 19.080453 8 

17 47.502982 19.081409 -40 

18 47.505488 19.082116 61 

19 47.507706 19.081259 37 

20 47.509121 19.081838 -17 

21 47.508908 19.083005 81 

22 47.508367 19.083632 52 

23 47.50606 19.084608 76 

24 47.504937 19.085591 -14 

25 47.503217 19.08456 43 

26 47.50247 19.08532 50 

27 47.504233 19.087563 -39 

28 47.503577 19.088435 39 

29 47.501554 19.065602 -40 

30 47.50562 19.069682 40 
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For implementing the GA, the following parameters were considered: population size is 100, the 

crossover probability is 40%, mutation probability is 20%, the number of iterations is 100, and the 

selection method is tournament selection. 

4.5.1. First scenario of diesel trucks 

In this scenario, two trucks were needed. Total consumed energy, total distance, needed time for the 

process, and initial weights for each truck, in this case, are summarized in Table 23. Execution of the 

whole code is 14.62 seconds. Also, the total energy and distance for a random solution are mentioned. 

Table 23 :Results of diesel trucks scenario 

 Total energy (kWh) Total distance (km) Time (min) 
Initial weight 

(Truck 1) 

Initial weight 

(Truck 2) 

Solution 1 606.17698 29.24704 50.06 105 197 

Solution 2 534.2343 25.94166 39.331 152 150 

Solution 3 548.88179 26.33791 43.3312 157 145 

Optimized solution 534.2343 25.94166 39.331 152 150 

Random solution 1429.40629 66.1656 - - - 

Figures 41, 42 show the actual routes for the optimized solution and random solution of this case. 

Red and blue colors are used to distinguish each truck's route. 

 

Figure   41 : Optimized solution for the first scenario (diesel) 
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Figure   42 : Random solution for the first scenario (diesel) 

4.5.2. Second scenario of electric trucks 

In this scenario, two trucks were needed as well. Total consumed energy, total distance, needed time 

for the process, and initial weights for each truck are presented in Table 24. The execution of the 

whole code is 13.95 seconds. Also, the total energy and distance for a random solution are mentioned. 

Figures 43, 44 show the actual routes for the optimized solution and random solution of this case. 

Red and blue colors are used to distinguish each truck's route.   

Table 24 :Results of electric trucks scenario 

 Total energy (kWh) Total distance (km) Time (min) 
Initial weight 

(Truck 1) 

Initial weight 

(Truck 2) 

Solution 1 289.8513 24.7695 45.7 217 85 

Solution 2 326.82914 28.42226 42.4 187 115 

Solution 3 298.91565 25.31579 39.8 208 94 

Optimized solution 289.8513 24.7695 45.7 217 85 

Random solution 707.68439   59.83013 - - - 

 

Figure 43: Optimized solution for the second scenario (electric) 
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Figure 44: Random solution for the second scenario (electric) 

4.6. Discussion and outcomes 

The results showed a big difference between the optimized and random solutions. The random 

solutions in Figures 42 and 44 showed numerous overlaps in the selected routes, which explains why 

there is a raise in their results compared with the optimized solutions. Figures 45 and 46 express the 

differences for calculated total energy and distance where OS refers to the optimized solution and RS 

refers to the random solution.  

 

Figure 45: Calculated total energy 

 

Figure 46: Calculated total distance 
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The results express two aspects to be compared. First, the optimization efficiency of GA with the 

random solution comparison. The results expressed minimizing the total energy as 37.3% and 40.95 

% compared to the random solution for diesel and electric cases respectively. Also, the results 

expressed minimizing the total distance as 39.2% and 41.4 % compared to the random solution for 

diesel and electric cases respectively. Second, comparing the diesel and electric cases efficiency. The 

results expressed minimizing the total energy as 54.26% in the electric case compared to the diesel 

one. However, in the total distance, the results were very similar. The GA algorithm showed highly 

efficient results in the optimization of this case, especially considering the applied upgrade where 

three solutions were done at the beginning to have a higher chance to exclude any possible local 

minimum points. The execution time is relatively acceptable. However, even with conceding real-

time updates, new runs to calculate updated routes are possible considering that it takes about around 

15 seconds to reach the results for 30 location cases. The electric trucks showed a very positive impact 

on energy reduction, which supports adopting them widely in reality. However, possible challenges 

to this adoption may happen, therefore, analyzing real-life cases of electric truck use is interesting to 

find out the accrued trouble. Depending on the achieved results, the adoption of electric trucks in the 

city center is recommended for their positive impact on the environment by saving spent energy. 

Also, raising the efficiency of the used optimization method next to widen the tackled data like 

including RL in the tackled system is highly recommended.  

From an alternative perspective, the selection of battery chargers entails significant considerations. 

Mainly, three levels of battery chargers are used [143]. Level 1 chargers represent the most 

rudimentary category and are typically included with the vehicle at the time of purchase, boasting an 

amperage rating of approximately 12 amps. Characterized by their relatively slow charging speeds, 

Level 1 chargers are best suited for overnight charging purposes. In contrast, level 2 chargers offer 

accelerated charging speeds, with amperage ratings typically ranging from 16 to 80 amps. Frequently 

installed at residences or within public charging stations, level 2 chargers cater to daily charging 

requirements adeptly. Lastly, level 3 chargers use direct current power and deliver the swiftest 

charging rates. Boasting high amperage ratings, often surpassing 100 amps, level 3 chargers are 

commonly situated at public charging stations, along thoroughfares, and within commercial 

establishments. This represents a further research direction to include the charger type selection in 

the optimization model depending on cost, charging speed, battery duration and size, and available 

infrastructure.  

This chapter included the main contribution to Thesis 4.   

Thesis 4: Presenting three case studies. The first one was in the Miskolc city center where the VRP 

problem was optimized by three algorithms next to a random route that is used as a comparison 

reference. The second one was in Kosice city center to validate a capacitive collection system using 

five algorithms. The adopted IoT tools allowed applying the constraints of vehicle maximum limit of 

goods, total collected goods for each vehicle, vehicles' flexibility, one/two ways consideration, and 

real routes' distances calculation. According to the results, GA is the advised algorithm to use, because 

it showed stable optimization effectiveness in both applications in contrast to the other algorithms. 

Furthermore, a last-mile supply optimization system within urban areas focusing on RL consideration 

was presented and described. The designed system incorporated cloud computing, real routes of 

vehicles, analysis of collected data, energy consumption optimization, and time windows. Also, a 

mathematical model was developed to optimize the total energy consumption. Real thirty locations 

in Budapest in the VII district were described and used for the third case study for finding the solutions 

of the optimized routes and energy consumption by GA for both diesel and electric trucks. The results 

were analyzed and compared against a random solution to clarify the presented optimization's 

effectiveness. [S4, S5, S10].  
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5. IN-PLANT COMPLEX PRODUCTION SYSTEM OPTIMIZATION  

This chapter discusses and shows the research direction of in-plant complex production system 

optimization. It starts with an investigation of the Industry 4.0 technologies' adoption effect on CE. 

Next to theoretical analysis for this possible impact, a research collaboration with the Technical 

University of Kosice facilitated access an important data from the European Manufacturing Survey 

(EMS) project. An innovative way is used to analyze and discuss this impact by using many tools 

including statistical ones. The applied methodology and outcomes are detailed. After that, energy 

consumption optimization of milk-run-based in-plant supply solution is presented. The found system 

is described and detailed. The mathematical model for both conventional and real-time milk-run-

based in-plant supply optimization is detailed. An optimization numerical analysis is used to compare 

the results and validate the model. The achieved results of this chapter were published mainly in three 

articles [S11, S12, S13].    

5.1. Investigation of the Industry 4.0 technologies adoption effect on CE 

Industry 4.0 represents several applications and technologies that provide various possible positive 

impacts on the industrial and logistics areas through supporting various practices that include CE 

[S1]. Despite the promising potential of Industry 4.0 technologies, there is a need to understand their 

effects on the manufacturing companies' outcomes in action. A study aimed to understand the patterns 

of Industry 4.0 technologies' adoption in manufacturing firms [144] showed that companies that have 

an advanced implementation level of Industry 4.0 tend to use most of the front-end technologies rather 

than a specific subset. Also, the Industry 4.0 framework was applied to raise the efficiency of energy 

and maintenance in a chemical plant where significant reductions (around 50%) in energy 

consumption and needed inspections for maintenance, next to less replacement time for the used 

pieces were achieved with a rational cost [145]. Management systems for energy and maintenance 

were integrated into the supply chain management system and the overall company management 

systems. Collected information by these management systems supported the process of decision-

making. For the aspect of reuse and disassembly, a scientific gap in researching those two actions 

was mentioned [146]. 

Based on the resulting literature [146], CPSs, IoT, BDA, additive manufacturing (AM), and 

simulation were specified as prime Industry 4.0 technologies attached to the CE. On the other hand, 

the only found paper by a systematic literature review that focused on reuse strategies considered AM 

the main solution for raising reuse efficiency [147]. In that case, reusing was intended for the terms 

of facilitating the textiles disassembly and reassembly. In the conclusion of that analytical work, AM 

and the IoT were the most mentioned as digital enablers for the CE. CPSs were taken as valid assisting 

tools to develop innovative lifecycle and product management strategies as well [146]. In a study in 

2021 [148] that used a survey that aimed 120 project managers, and 27 projects about the Industry 

4.0 technologies effects on the CE, AM showed one of the greatest influences on CE, as an 

assumption, because it was more difficult to estimate the other Industry 4.0 technologies' impact to 

determine that contribution as a value. It also mentioned the necessity of developing other quantitative 

studies that embrace the industrial companies that use Industry 4.0 technologies as a combination in 

their processes and that have a synergistic impact on CE. Because although a few technologies appear 

to have a greater positive impact than others on individual bases, it appears important to consider the 
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combined effect to measure the real influence on CE, however, the complexity of such multiple cases 

can limit its results. The results showed the existence of various effects that Industry 4.0 technologies 

bring to companies that contribute to circularity. The developments are mainly concerned with 

reducing the consumed material and energy, waste, and emissions generation. However, each 

technology showed noticeable different potential impacts. Especially, AM and robots that showed a 

higher positive impact. [148]. 

This investigation brings new light to this discussion of whether Industry 4.0 technologies have a 

potential influence on the use of CE technologies in manufacturing companies. It also reveals if the 

use of these Industry 4.0 technologies has a relation (potential influence) to the new product 

development, especially when the improved environmental impact of the product is the case. 

Moreover, the used data provided the possibility of including non-Industry 4.0 technologies to 

conduct a comparison of whether Industry 4.0 or non-Industry 4.0 technologies have a bigger 

potential to influence the adoption of CE technologies in manufacturing companies.  

5.1.1. Theoretical background 

This part presents a theoretical background related to this investigation. Mainly, the CE concept and 

the Industry 4.0 technologies related to CE are to be discussed.  

CE represents a business mindset to assist companies and communities in moving toward 

sustainability [149]. It provides an alternative viewpoint on the operational and formal frameworks 

of producing and consuming that is focused on re-establishing the estimation of used assets. CE 

suggests using a roundabout path to treat the materials that are possible to provide financial, 

sustainable, and social advantages [150] to organizations and replacing the conventional style of 

‘take, make, use and dispose’, which is recognized as the linear economy. However, applying CE 

concepts and standards in companies and manufacturing practices may face obstructions that cause 

more limitations than the fully expected results [151]. For instance, in a study of the CE 

implementation in China [152], the following challenges to a successful implementation of the CE 

were identified: a shortage of credible information, lack of state-of-art technology, weak legislation 

enforced, low economic rewards, weak leadership and management, and shortage of public 

awareness. 

Regarding materials utilization [153], CE is a growing paradigm that aims to achieve sustainable 

utilization of natural resources [149]. It concentrates on increasing the resources' circularity within 

manufacturing systems, because raw resources are limited, and the waste even at the end of its life, 

can hold a value [154]. CE is primarily based on two cycles that are technical and biological [155]. 

The technical cycle emphasizes the growth of a product's life anticipation by a fast order of circular 

systems that include reusing, repairing, refurbishment, remanufacturing, and recycling [156]; this 

cycle is also looking to convert what is identified waste into inputs for other forming frameworks. 

The biological cycle supports the environment by reducing the gross extraction of raw assets, using 

the materials in a sustainable way, and adopting anaerobic assimilation methods in waste management 

[157,158]. CE can be represented with three principles as well. These three principles are protecting 

regular raw capital for achieving a balance for usage amongst sustainable and non-renewable assets, 

increasing the expected life for the assets by both natural and specialized ways, and reducing the 

unfavorable effects of production substructures [S1]. The following six business actions that are 

referred to by the ReSOLVE framework were presented by Ellen MacArthur Foundation [155]. 

ReSOLVE refers to Regenerate, Share, Optimize, Loop, Virtualize, and Exchange, which are used to 

direct organizations through the fulfillment of the CE principles. As a classification of Industry 4.0, 

nine technologies were the major blocks of Industry 4.0 [159]: BDA, autonomous robots and vehicles, 

AM, simulation, augmented and virtual reality, horizontal/vertical system integration, the IoT, cloud, 

fog, and edge technologies, and blockchain and cyber-security. Considering the expected influence 

of Industry 4.0 technologies on CE, six commonly identified Industry 4.0 technologies in the literature 

are to be presented in more detail in various industrial aspects. Even other technologies were 
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mentioned but no more relevant studies found that support more details about their possible impact 

on CE. 

Additive manufacturing. Thirty articles identified AM as a reference element for the relationships 

between Industry 4.0 and CE [146]. It mainly described how AM can help to manage the products' 

lifecycle and processes while only a few considerations were mentioned for other connections. Also, 

few researchers discussed AM use to improve existing recycling processes by new sustainable 

networks using and manufacturing process digitalizing, for instance, through a new type of process 

[160] or managerial strategies [161]. Others proposed AM utilization concept for supporting the 

products or components remanufacturing [162] [163], circular business model development that 

centered on recycled materials [164], and the reuse of products/materials [147]. 

Internet of Things. IoT is regarded as a very important technology that can facilitate the transmission 

into CE [146]. Away from the papers that focused on a general potential description for the IoT to 

extend the product life cycle, there was a mutual realization that IoT extends its potential influence 

on a broad number of areas related to CE. One of the options was to adopt the IoT for smart cities 

strategies in innovative waste management [165]. Another option was to improve the metallurgical 

processes' circularity level [166]. Also, an opportunity for leveraging the IoT was CE digitalization 

practices, for instance, implementing environments for smart industry [167] or control loops with 

dynamic feedback [168]. 

Simulation. Numerous studies were conducted to investigate the simulations' effects on circular 

business models and product lifecycle management [146]. Other studies identified various ways 

where simulation can support CE. For instance, material flow modeling [169] or using simulation 

tools to support the decision of products' remanufacturing [170] [171]. In a case study, simulation 

was discussed as a supporting tool in recycling for calculating the performance indexes of recycling 

[172]. 

Big Data and Analytics. BDA was considered an easy way to digitalize the CE [173]. However, the 

possibilities of this way varied in many directions. For instance, developing automated assessments 

of the potential secondary materials value [174], using open-source tools, open data, procedures, and 

services for encouraging the action of reusing [175] and the service of cloud platforms for data 

collection and analysis [176]. Also, BDA was considered within the integrative frameworks in 

innovative business models [177] for managing the products' lifecycle [178] or implementing smart 

manufacturing activities [179]. Moreover, improving disassembly sequence planning [180] and 

recycling issues during product design [181].   

Robots. In a study about human-robot collaboration [182], a recycling line that is used for computer 

cathodic ray tube dismantling with a special focus on plastics was investigated. Only the tasks that 

need human skills were assigned to human operators while all other tasks were done by robots. The 

study resulted in a more efficient material recovery than the previously manual processes, primarily 

in terms of raising the quantity of recovered materials and plastic, which means higher revenues with 

significant additional benefits regarding the work environment via keeping humans away from the 

most dangerous tasks. Other studies also emphasized the advantages of human-robot collaboration 

for recycling [183], assembly, and disassembly [184] processes in several areas of frameworks for 

manufacturing and remanufacturing while focusing on their usefulness to support CE. Better 

productivity and profitability are usually achieved by assigning dangerous tasks to robots while other 

tasks with value-added allocated to humans. 

Cyber-physical systems. CPSs were the least discussed Industry 4.0 technology for boosting CE 

practices [146]. However, CPSs showed an obvious orientation to support the CE direction. Many 

researchers saw CPSs as an orientation to enhance the management of products' lifecycle or the 

development of new services, primarily for maintenance [185]. A few cases showed that the focus 

was on practices of remanufacturing and the management of multiple users' systems, for instance, in 

natural resource extraction [186]. Also, a CPS was introduced for waste management optimization 
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that focused on sustainability and energy efficiency [S2] that showed effective results in saving the 

used energy. 

As a conclusion to this introduction and brief literature review, the following notes are considered:  

• The literature stated various applications of the developed Industry 4.0 technologies in the 

manufacturing areas with a high potential of raising the CE. It reflected a possibility of 

direct/indirect impact on the CE orientation. 

• Industry 4.0 technologies contribute directly to digitalization, full product life analysis, 

dynamic feedback, and other tools that allow deeper and more inclusive analysis and 

optimization in the tackled system.  

• Many studies focused on finding analysis tools that measure the sustainable impact of 

applying Industry 4.0 technologies. However, most of these studies had a narrow domain and 

limited results because they tackled limited manufacturing areas. Also, analyzing this impact 

can be complex research easily due to the various Industry 4.0 applications and compound 

data that cannot be attributed to specific reasons directly. 

• A scientific gap in the correlation between Industry 4.0 and its impact on CE does exist. While 

the correlation of this potential relationship attempted to be shown, validating the correlation 

is very limited.  

5.1.2. Methodology and data 

While the literature revealed various Industry 4.0 technologies that can be applied in the 

manufacturing area, researching the real application of those technologies is considered a real 

challenge due to the needed time to adopt them in the companies. Mostly, this adoption requires a lot 

of time, effort, and training. After that, empirical research is needed to collect the data from these 

companies. From this perspective, one of the strongest pillars of this conducted research is to have 

inclusive data that almost covered all the manufacturing companies in the tackled countries. It was 

collected within the EMS project that is coordinated by the Fraunhofer Institute for Systems and 

Innovation Research [187]. The latest survey was carried out in eleven countries in 2018. It covered 

a core of indicators in the innovation fields. However, not all the mentioned Industry 4.0 technologies 

in the literature were used in this project. Therefore, according to the used data sample, only AM, 

robots, and simulation partially are to be analyzed (since only product simulation technology is 

covered). On the other hand, the literature included two aspects of CE, one showed CE as a promising 

approach toward sustainability and the other one showed the need to measure this potential impact 

because it is difficult to provide direct influence due to the various playing factors in practice. Within 

the mentioned survey used in this research, I worked on mapping related CE. Therefore, according to 

the data available in the sample, I analyzed the adopted technologies related to water recycling and 

reusing and kinetic and process energy recuperating in the manufacturing companies. While no direct 

conception was structured about if there are patterns between applying such technologies and the size, 

products type, conducted research and development actions, sector or another specification of the 

companies [188], a common consciousness of such adoption's usefulness is widespread, especially 

regarding the energy saving [189]. Moreover, other actions were considered in the manufacturing 

companies that are connected to CE indirectly, as they reflect major improvements in the products or 

process and improved environmental impact. These actions are to be considered under a separate 

category titled product characteristics.   

Regarding the used methods in the literature, various studies used different methods to reach their 

desired results. In a study about connecting CE and Industry 4.0 [190], the cause-and-effect 

relationship was used between various dimensions of Industry 4.0 and CE in the supply chain area. 

The dimensions of Industry 4.0 were obtained through the analysis of exploratory factors. 161 

responses from Indian manufacturing companies were the sample data. Also, they performed a cause-

and-effect relationship through DEMATEL analysis. Other studies also addressed different 

hypotheses to be analyzed in a specific way. In a study that examined the role of Industry 4.0 on CE 
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practices and the capability of the supply chain to increase the company's performance [191], eight 

hypotheses were presented while structural equation modeling was used for analyzing them. Also, in 

investigating how Industry 4.0 technologies and stakeholder pressure influence circular product 

design and impact company performance [192], five hypotheses were assumed. Partial least squares 

path modeling for data analysis was used. In another study [193], a qualitative analysis of selected 

case studies aimed to answer three research questions. The results were visualized to highlight 

applying digital technologies' effects on processes, companies, products, and supply chain within the 

transition into CE. Likewise, in a study regarding adopting the Industry 4.0 technologies pattern in 

manufacturing companies [144], four hypotheses were presented about using smart manufacturing 

technologies. The first step to analyzing the data was by identifying the tackled companies into 

several maturity scales regarding their adoption level of smart manufacturing technologies. Two 

groups with distinct technological levels were needed at a minimum for testing the hypotheses and 

finding out different patterns between these groups to explain the Industry 4.0 adoption. Then, a 

hierarchical cluster analysis was used to determine the adequate number of groups for sample 

division. After having the cluster compositions obtained, an analysis of the demographic aspect of 

the cluster members was performed. Pearson's Chi-squared test was used to reject the null hypothesis 

that stated there is no association among the variables. Also, the test of Fisher's exact was used for 

associations to reach four observations or less. 

As it was shown, there is a wide spectrum of approaches and methods used in the literature to 

investigate Industry 4.0's impact on CE. The rationale of the methodology is based on the research 

questions and available data. The general research question is if there are relationships between the 

use of Industry 4.0 and CE in manufacturing companies. The data comprises a sample of central 

European manufacturing companies, which includes the use of selected Industry 4.0 and CE 

technologies. To find out if there are relationships, the raw data were filtered at the beginning to 

exclude any invalid entries, and then, the methodology was built into two steps. First step: grouping 

the data to see if there are some differences in the use of technologies in the subsample groups. For 

this, contingent tables were used. This helped to find out where to expect possible relations between 

technologies. In this step, I also included non-Industry 4.0 technologies to see if there are differences 

between the use of Industry 4.0 and non-Industry 4.0 technologies. Second step: logistic regression 

(by IBM SPSS Statistics 25 software) was used to validate the expected relations. Before starting the 

logistic regression, a correlation test was applied to the independent variables to affirm their 

independence. It should be mentioned that even in a case where logistic regression shows a 

statistically significant relation between Industry 4.0 and CE technology, it does not reflect a causal 

relationship. Therefore, the odd ratio was used to reflect the strength of these possible relationships, 

but it cannot affirm them as a direct influence. In other words, this methodology can only show 

relations, but not affirm if Industry 4.0 supports or enhances the CE. This is one limitation of the used 

methodology. Nevertheless, showing the existence of the significant relationship can help other 

researchers to focus on this relationship and investigate causality. 

The tackled data is collected within the EMS project. The sample (N=798) contains data collected in 

Lithuania [194], Slovakia [195], Austria [196], Croatia, and Slovenia [197] as part of the EMS in 

2018. The numbers of companies in Lithuania, Slovakia, Austria, Croatia, and Slovenia are 

respectively 199, 114, 253, 105, and 127. These five countries were chosen since they represent 

relatively similar numbers of manufacturing companies. Also, the sample size of each country is 

considered separately small for conducting statistical tests. By analyzing the EMS data, the 

technologies that have a direct connection with this research were selected and stated in Figure 47. 

The mutually used questions within the EMS project in the mentioned five countries were considered 

since a few differences exist between one country and another in the actual practice of the survey. 

Also, used abridgments for the tackled technologies are mentioned in Figure 47. 
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Figure 47: Used technologies and product innovation (variables) with abridgments 

To be able to connect the used data with the aim of this research, the related data are classified into 

four categories. First, non-Industry 4.0 technologies that provide solutions based on digital and 

automation, however, they are not modern and/or innovative to be considered as Industry 4.0 

technologies depending on the literature. Second, Industry 4.0 technologies that are related to 

literature. Third, CE technologies that show taken actions in the companies for water saving by 

reusing or recycling, or for energy recuperating. Fourth, product characteristics that can be connected 

to CE indirectly by showing major improvements or new products that reflect the research and 

development aspect of the company as well as improved environmental impact of a new or improved 

product, for instance, extended product life, improved recycling, or reduced environmental pollution. 

5.1.3. Hypotheses building 

According to the available data and depending on the classified technologies (Figure 47), I built a 

research question, if there is a relationship (potentially effect) between the mentioned Industry 4.0 + 

non-Industry 4.0 technologies and adopting the mentioned CE technologies in manufacturing 

companies. Based on that, two hypotheses were developed:  

H1a: Implementation of CE technologies that support recycling and re-use of water is related to the 

adoption of Industry 4.0 technologies.  

H1b: Implementation of CE technologies that support recuperating process energy is related to the 

adoption of Industry 4.0 technologies. 

The research model (Figure 48) is the same for testing the two hypotheses in two steps, with only a 

difference in the dependent variable. While in the validation of H1a, the dependent variable is 

“technologies for recycling re-use water”, in the case of H1b, it is “technologies to recuperate kinetic 

and process energy”. For the independent variables, I have used all technologies which are included 

in the data sample (Industry 4.0 and non-Industry 4.0 technologies) (Figure 47). 
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Figure 48: Research model 1 for testing H1a and H1b 

Since there is data related to the product characteristics that can be connected to CE indirectly (Figure 

47) in the sample, I also built a second research question, if there is a relation (potentially effect) 

between the use of Industry 4.0 + CE technologies and improved environmental impact of the product. 

Based on that, two additional hypotheses were developed:   

H2a: Introducing new products or major technical improvements is related to the implementation of 

Industry 4.0 technologies. 

H2b: The development of products that lead to an improved environmental impact is related to the 

implementation of Industry 4.0 technologies. 

The research model (Figure 49) represents the same two steps methodology as above for testing both 

hypotheses, with changing the independent and the dependent variables. While in the validation of 

H2a the dependent variable is “introducing new products or major technical improvements of 

products”, in the case of H2b it is “improved environmental impact of a new (or improved) product”. 

Even though H2a is not directly connected to CE, I used it to allow us to find out if the use of specific 

Industry 4.0 technologies has a different relation to new product development and its improved 

environmental impact. In this model, as the independent variables, I have used all technologies in the 

data sample, including Industry 4.0, non- Industry 4.0, and CE technologies (Figure 47).  

 

Figure 49: Research model 2 for testing H2a and H2b 

For analyzing the results, the significance was considered, which is referred to as 'Sig' where it should 

be equal to or less than 0.05/0.1 to consider them acceptable. The results that achieved this condition 

were highlighted with dark grey color for a significance less than 0.05 and with light grey color for a 
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significance equal to or less than 0.1. After that, Exp(B) was considered, which refers to the odd ratio 

that simply comes from B raised to the exponent. The odd ratio indicates no effect when its value is 

1. When the odds ratio is greater than 1, it indicates that the specific predictor increases the odds of 

the output, while an odds ratio less than 1 indicates the specific predictor decreases the odds of the 

outcome [198]. Therefore, Sig and Exp(B) are to be used to discuss the results where the higher 

Exp(B) means more likely to have an impact on the dependent variable.  

5.2. Results and discussion 

This section is divided into two sub-sections for presenting the results of the two models. 

5.2.1. Relations investigation of the research model 1  

Within this model, possible relations for the impact of used technologies in the areas of production 

control, digital factory, automation and robotics, and AM technologies on the adoption of REW (resp. 

REE) technologies were analyzed. The differences between the companies' percentages that use 

Industry 4.0 (but also non- Industry 4.0) technologies in the whole sample compared to the subsample 

of companies that are using REW (resp. REE) technologies in the manufacturing companies are 

presented in Table 25 and Figure 50. 

Table 25: Comparison of companies that use Industry 4.0/non-Industry 4.0 technologies 

Technology Whole sample Subsample of companies that use REW Subsample of companies that use REE 

MW 34.63 39.58 44.59 

DS 46.04 53.93 55.41 

SPP 61.39 76.44 75.78 

DEP 43.76 56.68 53.92 

NRP 35.07 52.36 48.65 

SAM 27.72 39.79 39.91 

PLM 19.07 28.75 27.957 

VRS 25.52 34.375 31.82 

IR1 27.34 40.84 35.87 

IR2 24.22 41.67 42.79 

3D1 15.56 21.35 23.42 

3D2 10.33 13.54 13.96 
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Figure 50: Comparison of companies' percentages that use Industry 4.0 or non-Industry 4.0 technology 

By comparing the percentages for the whole sample and subsample of companies that use REW, I 

can find the highest differences in the case of three technologies (industrial robots for handling 

processes, near real-time production control system, and software for production planning and 

scheduling). There are also other three technologies showing differences (industrial robots for 

manufacturing processes, the digital exchange of product/process data with suppliers/customers, and 

systems for automation and management of internal logistics). Based on this, relationships between 

the use of these technologies and the use of REW are expected. By comparing the percentages for the 

whole sample and subsample of companies that use REE, I can find the highest differences also in 

the case of three technologies (industrial robots for handling processes, near real-time production 

control system, and software for production planning and scheduling). There are also other three 

technologies showing differences (systems for automation and management of internal logistics, the 
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digital exchange of product/process data with suppliers/customers, and mobile/wireless devices for 

controlling facilities and machinery. Based on this, I expect relationships between the use of these 

technologies and the use of REE. The statistical test is applied to validate the expected relationship 

and support or deny the hypothesis. The method for testing is the logistic regression by IBM SPSS 

Statistics 25 software. For the H1a test, the sample was N = 543 after filtering the raw data. Before 

testing, a correlation test was applied to the 12 independent variables (Figure 47, Industry 4.0, non-

Industry 4.0). The tackled variables (technologies) appeared to be independent where the highest 

correlation value was 0.3638 except for 3D1 and 3D2 technologies, which showed 0.533. These 

values allow us to consider the 12 technologies as independent variables. The results of the logistic 

regression are presented in Table 26. 

As Table 26 shows, four technologies of SPP, NRP, IR1, and IR2 showed statistically significant 

relationships with the dependent variable REW. IR2 and NRP showed the strongest significance of 

relationship and influence (Exp(B)) on the REW. Based on this, I can conclude that the significance 

of the relationship between the use of specific technology and the use of REW, is not dominantly 

influenced by whether it is Industry 4.0 technology or not.  

Table 26: Results of logistic regression (research model 1, dependent variable – REW) 

Technology B Std. Err. Wald df Sig Exp(B) 
CI 95% 

Lower Upper 

MW -0.222 0.231 0.925 1 0.336 .801 0.510 1.259 

DS 0.076 0.229 0.109 1 0.742 1.079 0.688 1.691 

SPP 0.463 0.266 3.029 1 0.082 1.588 .943 2.674 

DEP 0.342 0.222 2.373 1 0.123 1.407 0.911 2.174 

NRP 0.667 0.236 7.992 1 0.005 1.949 1.227 3.096 

SAM 0.151 0.237 0.405 1 0.525 1.163 0.731 1.849 

PLM 0.059 0.281 0.044 1 0.834 1.061 0.612 1.839 

VRS 0.192 0.252 0.581 1 0.446 1.212 0.739 1.988 

IR1 0.466 0.235 3.928 1 0.047 1.594 1.005 2.527 

IR2 0.711 0.233 9.336 1 0.002 2.035 1.290 3.210 

3D1 -0.217 0.322 0.452 1 0.502 .805 0.428 1.515 

3D2 -0.190 0.366 0.270 1 0.603 .827 0.403 1.695 

Constant -2.077 0.228 82.922 1 0.000 .125   

To validate the expected relationship in H1b, I used the logistics regression test again. Before this 

analysis, I filtered the raw data accordingly (final N = 546 companies). The correlation test is the 

same as the previous one (same 12 technologies).  

The results of the logistic regression test are presented in Table 27. Four technologies of SPP, NRP, 

SAM, and IR2 showed statistically significant relationships with the dependent variable REE. IR2 

and SPP showed the strongest significance of relationship and influence (Exp(B)) on the REE. I can 

conclude also in the case of REE (similarly to REW), that the significance of the relationship between 

the use of specific technology and the use of REE, is not dominantly influenced by whether it is 

Industry 4.0 technology or not. It is important to highlight that NRP showed a 0.106 significance 

result in Table 27. Even if it is more than the significant step of 0.1, it is very close to it, therefore, it 

was considered equal to 0.1.   

Table 27: Results of logistic regression (research model 1, dependent variable – REE) 

Technology B Std. Err. Wald df Sig Exp(B) 
CI 95% 

Lower Upper 

MW 0.205 0.216 0.897 1 0.344 1.227 0.803 1.875 

DS 0.196 0.220 0.800 1 0.371 1.217 0.791 1.872 

SPP 0.631 0.254 6.152 1 0.013 1.879 1.142 3.094 

DEP 0.078 0.214 0.133 1 0.715 1.081 0.710 1.646 

NRP 0.370 0.229 2.614 1 0.106 1.448 0.925 2.266 

SAM 0.389 0.226 2.952 1 0.086 1.475 0.947 2.298 

PLM 0.011 0.271 0.002 1 0.969 1.011 0.594 1.720 

VRS 0.018 0.246 0.005 1 0.942 1.018 0.629 1.647 
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IR1 0.006 0.232 0.001 1 0.978 1.006 0.639 1.585 

IR2 0.973 0.226 18.447 1 0.000 2.645 1.697 4.124 

3D1 0.041 0.307 0.018 1 0.893 1.042 0.571 1.902 

3D2 -0.384 0.355 1.171 1 0.279 0.681 0.340 1.875 

Constant -1.940 0.221 77.411 1 0.000 0.144   

5.2.2. Relations investigation of the research model 2  

Within this model, possible relations for the impact of used technologies in the areas of production 

control, digital factory, automation and robotics, and AM technologies on the new or improved 

product development (NPI), (resp. improved environmental impact (IEI) of the product) were 

analyzed. The differences between the companies' percentages that use Industry 4.0, non- Industry 

4.0, and CE technologies in the whole sample compared to the subsample of companies that have 

done NPI, (resp. IEI) are presented in Table 28 and Figure 50. 

Table 28: Comparison of companies that use the Industry 4.0 or non-Industry 4.0 technology 

Technology Whole sample 
Subsample of companies that 

have done NPI 

Subsample of companies that 

have done IEI 

MW 34.63 43.17 36.99 

DS 46.04 48.89 61.19 

SPP 61.39 56.22 75.34 

DEP 43.76 43.18 47.22 

NRP 35.07 44.89 43.58 

SAM 27.72 28.89 36.24 

PLM 19.07 20.41 33.52 

VRS 25.52 32.20 42.99 

IR1 27.34 29.03 39.37 

IR2 24.23 21.43 39.09 

3D1 15.56 12.43 25.91 

3D2 10.33 13.07 18.81 

REW 25.77 26.9 32.39 

REE 29.59 27.06 33.95 

 

By comparing the percentages for the whole sample and subsample of companies that have done NPI, 

I can find the highest differences are in the case of three technologies (NRP, MW, and VRS). Other 

technologies showed less significant differences, but interestingly, some were negative (the highest 

negative difference was SPP), but in value it was small. Based on this, I expect a relationship between 

the use of these technologies and the execution of NPI. 

By comparing the whole sample and subsample percentages of companies that have done IEI, highest 

differences in the case of five technologies (DS, SPP, PLM, VRS, and IR2) are found. Also, two other 

technologies (IR1 and 3D1) showed moderate differences. Based on this, I expect more relationships 

between the use of these technologies and the execution of IEI.  



 IN-PLANT COMPLEX PRODUCTION SYSTEM OPTIMIZATION 

71 

 

Figure 51: Comparison of companies' percentages that use I4.0, non-I4.0, or CE technology 

To validate the expected relationship in H2a, I used the logistics regression test again. Before this 

analysis, the raw data was filtered accordingly (final N = 535 companies) and made the correlation 

test for 14 technologies (12 technologies + 2 CE technologies). The highest correlation value for the 

two new variables (technologies) was 0.346, which is still low and allows us to consider the 14 

technologies as independent variables. The results of the logistic regression are presented in Table 

29. 

As Table 29 shows, only the two technologies of VRS and 3D1 showed statistically significant 

relationships with the dependent variable NPI. They both showed strong significance of relationship 

and influence (Exp(B)). Based on this, surprisingly, the significant relationships are not between 

technologies that I expect according to the differences identified above (Figure 51), but the main 

finding is, that it seems that Industry 4.0 technologies dominate over non-Industry 4.0 and CE 

technologies in having significant relationships with the execution of NPI in manufacturing 

companies.  



 IN-PLANT COMPLEX PRODUCTION SYSTEM OPTIMIZATION 

72 

Table 29: Results of logistic regression (research model 2, dependent variable – NPI) 

Technology B Std. Err. Wald df Sig Exp(B) 
CI 95% 

Lower Upper 

MW -0.096 0.227 0.179 1 0.672 .908 0.583 1.417 

DS 0.143 0.214 0.447 1 0.504 1.154 0.759 1.755 

SPP -0.187 0.228 0.676 1 0.411 .829 0.531 1.296 

DEP 0.140 0.210 0.444 1 0.505 1.150 0.763 1.734 

NRP 0.272 0.239 1.293 1 0.255 1.312 0.821 2.097 

SAM 0.175 0.247 0.499 1 0.480 1.191 0.733 1.934 

PLM 0.420 0.316 1.764 1 0.184 1.522 0.819 2.830 

VRS 0.825 0.273 9.105 1 0.003 2.281 1.335 3.898 

IR1 0.069 0.235 0.086 1 0.769 1.071 0.676 1.698 

IR2 0.270 0.244 1.222 1 0.269 1.310 0.812 2.113 

3D1 0.748 0.361 4.298 1 0.038 2.113 1.042 4.286 

3D2 0.427 0.417 1.048 1 0.306 1.533 0.677 3.472 

REW 0.196 0.236 0.686 1 0.408 1.216 0.765 1.932 

REE -0.168 0.226 0.550 1 0.458 .845 0.542 1.318 

Constant 0.013 0.176 0.005 1 0.942 1.013   

In the last part of the analysis, to validate the expected relationship in H2b, I used the logistics 

regression test again. Before the analysis, the raw data were filtered accordingly (final N = 430 

companies). The correlation test is the same as the previous one (same 14 technologies). The results 

of the logistic regression are presented in Table 30. 

As shown in Table 30, four technologies of SPP, PLM, VRS, and IR2 showed statistically significant 

relationships with the dependent variable IEI. The strongest significance of relationship and influence 

(Exp(B)) on the IEI has PLM. Interestingly, despite the expected higher number of technologies to 

be related to the execution of IEI, the regression does not prove it. Nevertheless, in contrast to the 

execution of NPI, it seems that the significance of the relationship between the use of specific 

technology and the execution of IEI is not dominantly influenced by whether it is Industry 4.0 

technology or not.  

Table 30: Results of logistic regression (research model 2, dependent variable – IEI) 

Technology B Std. Err. Wald df Sig Exp(B) 
CI 95% 

Lower Upper 

MW -0.190 0.247 0.592 1 0.441 0.827 0.510 1.342 

DS 0.345 0.241 2.045 1 0.153 1.412 0.880 2.266 

SPP 0.454 0.266 2.897 1 0.089 1.574 0.934 2.653 

DEP -0.383 0.241 2.538 1 0.111 0.682 0.425 1.092 

NRP -0.270 0.262 1.064 1 0.302 0.763 0.457 1.275 

SAM -0.018 0.259 0.005 1 0.944 0.982 0.591 1.631 

PLM 0.949 0.300 10.001 1 0.002 2.583 1.434 4.651 

VRS 0.620 0.255 5.916 1 0.015 1.858 1.128 3.061 

IR1 0.167 0.244 0.468 1 0.494 1.181 0.733 1.904 

IR2 0.573 0.256 5.014 1 0.025 1.773 1.074 2.927 

3D1 0.078 0.325 0.057 1 0.811 1.081 0.572 2.042 

3D2 0.481 0.375 1.643 1 0.200 1.618 0.775 3.375 

REW 0.071 0.256 0.077 1 0.782 1.074 0.650 1.773 

REE 0.139 0.251 0.307 1 0.580 1.149 0.702 1.880 

Constant -1.244 0.213 34.072 1 0.000 0.288   

5.3. Discussion of the results 

The investigation of the relations between the use of Industry 4.0 and CE technologies (research 

model 1) showed that in general, it seems that both Industry 4.0 technologies and non-Industry 4.0 

technologies could have significant relations with CE technologies. Interestingly, both have 

significant relation with three identical technologies (IR2, NRP, and SPP) and one different for each. 

The most significant relation (measured by Sig. and Exp(B)) in the case of both CE technologies is 

IR2, i.e., industrial robots for handling processes. This relation could possibly be connected to the 

technological level of the company. The existence of the relation with the second identical technology 
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(NRP), for both CE technologies (especially the REW) could be caused by specific characteristics of 

the production process. The third commonly related technology (SPP) (especially significant for 

REE) can support previous arguments, that the company that uses REW or REE should be on some 

technological level and have a specific production process, where it can apply SPP. In the case of 

REW, there is one different significant technology (IR1). Explanation of significant relation with IR1 

in the case of REW can lead us to the sectors such as automotive, electronics, etc., where the use of 

IR1 is widespread, so again to some specifics of the production process. In the case of REE, the 

different technology is SAM. I can only assume that some specifics of the production process can 

play a role in this relation. 

The results showed significant relations of CE technologies (REW and REE) with robotics (IR1 and 

IR2), which is in partial agreement with e.g., the review of [148], who stated that there is most 

evidence of the positive impact of AM and robotics on circularity in companies. This found relation 

(in the case of IR2) is also in accordance with Álvarez-de-los-Mozos et al. [182] and Renteria et al. 

[183]. However, another study [146] stated that AM could be exploited to improve energy 

consumption, which is not in line with the results. Another finding [148] that showed AM and VRS 

having the potential to reduce energy consumption, is also not supported by the results. In addition, 

they showed for robotics, that CE energy indicators vary in a range between 1.7 and 2.7 (on Likert-

scale 0-4), i.e., the value of the influence is medium-high, however, the impact on the CE water 

variable has been less valued than 1.7. The results indicated the opposite situation since in the case 

REE has a significant relation with only one robotics variable (IR2) and REW has a significant 

relationship with both robotics variables (IR1, IR2), but I should be aware of the different 

methodologies and variables in both studies. Nevertheless, the results are in line with additional 

findings of [148] that identified small energy reductions (less than 5%) in relation to the use of robots, 

despite the energy consumption of the robots. When looking solely at the REE technologies, a 

significant relationship is found with SPP and SAM, in accordance with Rosa et al. [146], Bloomfield 

et al. [147], Lahrour et al. [162], and Leino et al. [163] and in case of NRP with Rosa et al. [146] and 

Hatzivasilis et al. [167]. When looking separately at REW technologies, significant relation was 

found with NRP that is in line with Rosa et al. [146] and Hatzivasilis et al. [167], while in the case of 

SPP with Rosa et al. [146], Bloomfield et al. [147], and Nascimento et al. [164]. 

The investigation of the relation between Industry 4.0, non-Industry 4.0, and CE technologies and 

execution of new or improved product development (NPI) (resp. new or improved products with 

improved environmental impact (IEI)) (research model 2) showed major differences. In the case of 

NPI as dependent variable, two technologies (VRS and 3D1) showed statistically significant 

relationships. Here, the explanation is quite clear since both VRS and 3D1 are logically tight to 

product development. Moreover, this result confirms the validity of the data and analyses. Lastly, it 

should be mentioned that clear dominance of Industry 4.0 technologies appears here. In the case of 

IEI as a dependent variable, the situation is different. Like NPI, VRS (as a product development tool) 

created significant relations with IEI. Nevertheless, even higher significance (also influence (Exp(B)) 

is in the PLM (Product lifecycle management or product/process data management). These are 

important findings that PLM has the potential to be an influential factor in the improvement of the 

environmental impact of the products. There were also other two technologies (SPP and IR2) that 

showed statistically significant relationships with IEI. This is not so straightforward to explain, but I 

assume similarly to above, that it can be connected to the technological level of the company and 

specifics of the production process. Lastly, it should be mentioned that no clear dominance of Industry 

4.0 technologies over non-Industry 4.0 was found. In addition, it seems that there was not a clear 

connection between the use of CE technologies and the development of a product with improved 

environmental impact. 

The results in the case of NPI (as a dependent variable) supported the literature findings [144], which 

showed there is a connection between the adoption of Smart Manufacturing and Smart Product 

technologies. The finding on VRS relation to product development was also in accordance with Rosa 
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et al. [146], Kuik et al. [170], and Wang et al. [171]). Another study [146] showed that Industry 4.0 

technologies can have a positive effect on the lifecycle management of products, while I found 

similarly that the use of virtual reality and robotics is related to the development of the IEI (improved 

environmental impact of a new product) by the company. The results [148] that showed robotics to 

have a medium influence (1.5 - 2.2 on Likert-scale 0-4) on reuse and recovery characteristics of the 

products are also in agreement with the found results since I identified the relationship between the 

use of robots (IR2) and IEI. Moreover, the relationship between IEI of the product and VRS 

technology is in line with the findings of Kuik et al. [170] and Wang et al. [171], while the relation 

with IR2 is in accordance with Álvarez-de-los-Mozos et al. [182] and Daneshmand et al. [184]. 

Finally, a relationship was found between IEI with PLM and SPP is also supportive of previous 

studies (Rosa et al. [146] and Unruh [161]). The results of the analysis, from the view of tackled 

Industry 4.0 and non-Industry 4.0 technologies, showed a statistically significant relationship with 

dependent variables (REW, REE, NPI, IEI) in a few of them. Interestingly there were only two 

technologies (SPP and IR2) that showed a significant relationship (so potential impact) on the CE 

technologies (REW, REE) but also on the development of the product with improved environmental 

impact (IEI). What is behind this wider “pro-environmental” scope of these two technologies (in 

comparison to others) is not clear but could guide the focus of future research in this field. 

The results showed that eight of the tackled twelve (resp. fourteen) technologies have a significant 

relation with CE technologies (research model 1) or CE improvements of products (research model 

2).  Regarding CE technologies (REW and REE), the investigation of their relations with the use of 

Industry 4.0 technologies showed, that in general, it seems, that both Industry 4.0 technologies and 

non-Industry 4.0 technologies could have significant relations with them, so they could be potentially 

influenced or enhanced by both. Interestingly, both CE technologies have significant relation with 

three identical technologies (IR2, NRP, and SPP) and one different for each, while in both cases the 

most significant is IR2. The explanation of the findings directs us to the characteristics like the 

technological level of the company or specifics of the production process. My findings support 

previous studies that showed a positive impact of robotics on circularity in companies but are not in 

line with studies that showed AM or virtual reality could be exploited to improve energy 

consumption.  

Regarding CE improvements of products (environmental impact (IEI) of new or improved products), 

the investigation of its relations with the use of Industry 4.0 technologies showed no clear dominance 

of Industry 4.0 technologies over non-Industry 4.0. It was found that VRS as Industry 4.0 (resp. 

product development) technology relates significantly, but also non-Industry 4.0 (PLM technology) 

has even higher significance. I consider this identified relation an important finding because it reveals 

the PLM´s potential to be an influential factor in the improvement of the environmental impact of the 

products. A significant relation with the other two technologies, SPP and IR2, is not so 

straightforward to explain, but I assume that the technological level of the company and specifics of 

the production process could lie behind it. Regarding the relationship with CE technologies, it seems 

that there is no connection between product development with IEI and these technologies. The 

findings are not in contradiction with previous studies, for example, that Industry 4.0 technologies 

can have a positive effect on the lifecycle management of products or that robotics has a medium 

influence on the reuse and recovery characteristics of the products.  

On the other hand, four of the twelve (resp. fourteen) tackled technologies did not show any 

significant relation with CE technologies (research model 1) or CE improvements of products 

(research model 2) that are namely MW, DS, DEP, and 3D2. The results, from the view of tackled 

Industry 4.0 and non-Industry 4.0 technologies, showed that there are only two technologies (SPP 

and IR2) have a significant relationship (so potential impact) on the CE technologies (REW, REE) 

but also on the development of the product with improved environmental impact (IEI). This wider 

CE relationship can guide the focus of future research in this field. The results confirm the potential 

CE efficiency growth in manufacturing companies by adopting the Industry 4.0 technologies. While 
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not all the technologies showed significant relations, the achieved results still give strong affirmation 

in accordance with the literature review in the direction of that various application of the developed 

Industry 4.0 technologies have a high potential of raising the CE. The results gain special importance 

since it is based on a large sample of companies (N=798) and handles numerous technologies, but it 

has some limitations regarding its focus on Central Europe and the manufacturing industry.  

5.4. Energy consumption optimization of milk-run-based in-plant supply solution 

Smart factories are equipped with Industry 4.0 technologies including smart sensors, digital twins, 

big data, and embedded software solutions. The application of these technologies contributes to real-

time decision-making, and this can improve the efficiency of both manufacturing and related logistics 

processes. Therefore, the transformation of conventional milk-run-based in-plant supply solutions 

into a cyber-physical milk-run supply is to be discussed, where the application of Industry 4.0 

technologies makes it possible to make real-time decisions regarding scheduling, routing, and 

resource planning. 

5.4.1. Introduction 

The purpose is to describe a novel mathematical model, which makes it possible to integrate the MES 

data-based and real-time generated supply demands to decrease the energy consumption and virtual 

GHG emission of milk-run trolleys. The scope is an optimization approach that is based on the 

application of Industry 4.0 technologies with the aim of improving the efficiency, flexibility, and 

sustainability of the in-plant supply. This in-plant supply system is based on Industry 4.0 technologies 

including digital twin and milk-run approaches with the aim of energy consumption optimization. A 

numerical analysis is presented for the two described models in different scenarios with comparative 

analysis among them.  

Starting with a brief literature about the impact of Industry 4.0 technologies on the optimization of 

energy consumption of milk-run-based in-plant supply solutions. Manufacturing sector benefits from 

new technological development including new product development, time-to-market reduction, cost-

effective use of manufacturing resources, and personalized production supplying [199]. To validate 

smart manufacturing, essential issues should be taken into consideration, which include 

interoperability, developing the integration of the technologies, developing the technologies 

themselves, and customization of the support for technology development and implementation as 

required practically [200]. Smart factory expresses the integration and combination of Industry 4.0 

technologies in the manufacturing sector. The terms ‘smart’ and ‘intelligent’ are used interchangeably 

to show various aspects of ‘smartness’ or ‘intelligence’ by applying advanced manufacturing systems. 

The found papers in a review study [201] covered various areas of smartness/intelligence of the future 

factory next to a broad range of activities and proposed models, algorithms, methodologies, 

frameworks, and other tools, which support developing and applying the technology to fit the actual 

needs in manufacturing covering different recognition levels toward the implementation and 

deployment in the real factory. Also, to encounter the highly diverse customer demands within new 

manufacturing systems next to the constantly increasing product variety and continuous mass 

customization, the single-model assembly lines transferred to mixed-model assembly lines in 

manufacturing [202]. The mixed model for the assembling line in the mass production method works 

on the assembly of several variants of finished products within the same assembly line that contributes 

to the realization of lean production in automobile companies. However, the big number of 

component variables makes it more difficult for just-in-time materials to arrive within the mixed-

model assembling lines, which leads to a significant challenge in the problem of supplying the 

materials in manufacturing systems [203].  

One of the important methods in delivery is the milk-run, which allows the movement of small 

quantities of various items with predictable lead times from many suppliers to a customer. The main 

goal of this method is to minimize the costs of transportation that come from minimizing the 
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transportation distance and maximizing the vehicle capacities. The uncertainties and effects in the 

arrival times of vehicles and loading times of shipments are also to be considered in modeling the 

problems of milk-run [66]. A milk-run material-feeding problem was analyzed and used in different 

approaches such as being researched based on a two-level logistics network for mixed-model 

assembly lines that was proposed as a series of material-feeding tasks and performed by a group of 

electrical vehicles between the central warehouse and the line-integrated. That problem aimed to 

minimize the number of used vehicles number and at the same time, to maximum the electric vehicles 

traveling distance, which leads to the same direction of raising the efficiency of cost and energy 

requests within the just-in-time production of automobile manufacturing [204]. While Industry 4.0 

and manufacturing digitalization were once considered among coming directions [205], they are 

currently considered a main part of the manufacturing plans for transformation into a more customer-

oriented inclusion within the mass customization as this is among the strategic priorities for 

manufacturers who are looking for sustainable competitiveness [206]. This supported the planning of 

the regular small-lot deliveries from a decentralized storage point into various locations. Loading and 

delivery schedule problems aimed to be optimized. The optimization included the selection of 

material types and quantities next to the best sequence of materials that should be delivered to each 

assembly station at each time with the aim of minimizing the total cost related to material 

transportation and storage at stations [88]. For instance, by raising productivity efficiency [207] or 

decreasing GHG emissions. An investigation of Industry 4.0 technologies’ adoption in manufacturing 

companies confirmed the efficiency growth because of this adoption [S11] where the automation of 

production planning and scheduling next to industrial robots for handling processes showed 

significant relationships with improving the environmental impact and productivity.  

5.4.2. Structure of Industry 4.0-based in-plant supply 

As the literature showed, the application of Industry 4.0 technologies can lead to a significant increase 

in the performance of manufacturing and service processes. It is especially important in the case of 

in-plant supply processes of manufacturing systems, where the availability, flexibility, and efficiency 

of logistics processes have a great impact on the manufacturing operations, therefore, it is unavoidable 

to apply Industry 4.0 technologies to improve conventional in-plant supply systems and transform 

them into CPSs. This transformation can lead to real-time in-plant supply optimization, which is 

important to take dynamically changing demands, status, and failure data into consideration (Figure 

52).  
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Figure 52: Structure of Industry 4.0 technologies supported by milk-run-based in-plant supply 

The structural model of Industry 4.0 technologies supported by milk-run-based in-plant supply 

includes the following levels: 

• Enterprise level: the enterprise level is represented by Enterprise Resource Planning (ERP), 

where all strategic decisions are made. The ERP includes the following main modules: 

inventory, sales, finance, services, human resources, procurement or purchasing, and 

customer relationship management. The production module focuses on scheduling and 

quantitative analysis, while the shop-floor process operations are managed by the MES in 

real-time, based on the results of the supervisory level, as mentioned in Pyramid Solutions 

[208]. 

• Management level: the management level is represented by the MES, which focuses on 

productivity and cost efficiency by using the following MES modules and functions: delivery, 

inventory, reports, work orders, statistical process control, work orders, tracking, work 

instructions, resource management, and equipment interfacing.  

• Supervisory level: the supervisory level supports the optimization processes of MES through 

simulation, analysis, and forecasting. The simulation model of the discrete event simulation 

software is a dynamic real-time model, which is permanently upgraded by the digital twin of 

the real-world system, including technological and logistics processes. The technological 

processes include the manufacturing zone, while logistics includes the warehousing zone and 

the resources of in-plant supply, e.g., the milk-run trolley pool. The supervisory level is 
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responsible for the support of MES functions, including optimization of shop floor processes 

and in-plant supply optimization. 

• Digital twin of the control and field level: in the digital level of the model, three levels of 

maturity of digital twin solutions are defined: digital model, digital shadow, and digital twin. 

In the case of the digital model, we are talking about a digital copy of the physical system, 

where the data exchange is performed manually in both directions between the physical and 

digital systems. In the case of digital shadow, status and failure data is uploaded from the 

physical system to the digital shadow, while in the other direction, the data upload is 

automatic. In the case of the digital twin, the data exchange is performed automatically. The 

digital twin is a digital reproduction of the physical system, which represents all parameters 

of the physical system based on status information and failure data from sensors, sensor 

networks, and sensor hubs. Big data is especially important in the case of the digital twin 

because sensors collect data with big volume, velocity, and variety. The digital aggregate 

represents processes, the digital prototype products, while the digital environment is a copy 

of the physical environment of the physical system. The digital twin generates a real-time 

model based on the status information and failure data of the manufacturing system, 

warehouse, and in-plant supply logistics, and this real-time model is uploaded to the discrete 

event simulation. The real-time upgraded simulation model is a very important part of the 

model because the simulation and optimization of the integrated manufacturing and in-plant 

supply system can be efficiently performed only with a real-time upgraded model, including 

the status of resources and processes. 

• Control and field level: this level is represented by the real-world system, where the physical 

components of the manufacturing and logistics operations are integrated into a value chain. 

The physical level of the model includes the following Industry 4.0 technologies: smart 

sensors, sensor networks, sensor hubs, edge computing, intelligent tools, gentelligent products 

or components, robots, AGVs, cobots, and RFID technologies for the identification or location 

detection. The monitoring of technological and logistics resources is performed by smart 

sensors and sensor networks. These smart sensors, sensor networks, and sensor hubs collect 

data from the physical system and perform predefined preprocessing and statistical analysis 

to create a predefined specific input regarding status information and failure data. The 

preprocessed information is sent to an IoT gateway through RFID, Bluetooth, or Message 

Queue Telemetry Transport, which is the standard messaging protocol for IoT solutions. The 

monitoring of the tool condition can be automatized by using intelligent tools, where in-built 

micro-sensors can send information regarding the status of the machining tool [209]. 

Gentelligent products generate information about their creation, distribution, and use, 

including their life cycle. Gentelligent products in the physical processes can support the 

decision-making regarding operations required in the manufacturing and logistics processes 

[210]. In the model, the sensor data comes from manufacturing resources, warehouse 

equipment, milk-run trolleys, products, and operators. 

Based on the above-mentioned application, it is possible to define a mathematical model and to 

optimize the in-plant supply taking not only MES data-based predefined supply demands but also 

real-time through the supervisory level generated in-plant supply demands into consideration. 

5.5. Mathematical model of Industry 4.0 supported in-plant supply optimization 

The objective function of the optimization model is the energy efficiency of the milk-run-based in-

plant supply, while time and capacity-related constraints are taken into consideration. Depending on 

the source of the in-plant supply demand, two different types of scheduling can be defined. In-plant 

supply demands generated by the MES can be scheduled before a specific, predefined time window, 

while new in-plant supply demands generated by the supervisory level must be scheduled in real-

time. The supervisory level can generate real-time in-plant demands depending on the status 
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information and failure data uploaded from the digital twin of the manufacturing, warehouse, or milk-

run trolley depot zone, and the prescheduled, MES-based routing must be upgraded to fulfill the new 

in-plant supply demands. In this section, the conventional milk-run-based in-plant supply model and 

the real-time milk-run-based in-plant supply model supported by Industry 4.0 technologies are 

described. 

5.5.1. Conventional milk-run-based in-plant supply optimization 

The optimization model of the conventional milk-run-based in-plant supply includes the following 

main parts: 

• the objective function (minimization of energy consumption and emission), 

• time-based constraints, 

• capacity-based constraints, 

• sequence-based constraints, 

• energy-based constraints, 

• decision variable (optimal routing and scheduling of MES-based and real-time supply 

demands). 

In the case of conventional optimization, two solutions are defined: in the first case only MES data-

based in-plant supply demands are taken into consideration, while in the second case, real-time 

demands are also added to the routes as separated supply operations. 

The objective function of the milk-run-based in-plant supply can be defined depending on the routing 

and scheduling of the milk-run trolleys: 

𝐶𝐸𝐶 = ∑ [𝑙𝑖,0,𝑥𝑖,1
∙ 𝑞𝑖,0,𝑥𝑖,1

∙ 𝑒(𝑞𝑖,0,𝑥𝑖,1
) + 𝑙𝑖,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0 ∙ 𝑞𝑖,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0 ∙ 𝑒 (𝑞𝑖,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0)

𝑚+𝜉

𝑖=1

+  ∑ 𝑙𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1
∙ 𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1

∙ 𝑒 (𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1
)

𝑖𝑚𝑎𝑥−1

𝑗=1
+ ∑ 𝑒𝑀𝐻 ∙ (∆𝑞𝑖,𝑗)

𝑖𝑚𝑎𝑥

𝑗=0
] → 𝑚𝑖𝑛 

(57) 

where 𝐶𝐸𝐶 is the energy consumption of the milk-run-based in-plant supply solution within the time 

frame of the analysis, 𝑙𝑖,0,𝑥𝑖,1
 is the length of the route scheduled between the milk-run trolley depot 

and the first station of the in-plant supply in the case of route i, 𝑞𝑖,0,𝑥𝑖,1
 is the weight of the loading of 

the milk-run trolley between the milk-run trolley depot and the first station of the in-plant supply in 

the case of route i, 𝑙𝑖,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0 is the length of the route scheduled between the last station and the milk-

run trolley depot of the in-plant supply in the case of route i, 𝑞,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0 is the weight of the loading of 

the milk-run trolley between the last station and the milk-run trolley depot of the in-plant supply in 

the case of route i, 𝑙𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1
 is the length of the route scheduled between station j and station j+1 in 

the case of the milk-run route i, 𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1
 is the weight of the loading of the milk-run trolley between 

station j and station j+1 in the case of the milk-run route i, 𝑒 is the specific energy consumption of 

the milk-run trolley depending on the weight of the loading of the milk-run trolleys: 𝑒 = 𝑒(𝑞), 𝑖𝑚𝑎𝑥 

is the number of stations assigned to route i, 𝑥𝛼,𝛽 is the assignment matrix, which is the decision 

variable of the optimization problem, as the ID of 𝛽th station of route 𝛼. based on MES-data generated 

in-plant supply demands, 𝑒𝑀𝐻 is the specific energy consumption of material handling operations and 

∆𝑞𝑖,𝑗 is the weight of loaded/unloaded products at the station j of route i (difference of weight before 

and after station i). 

Time-related constraints of the conventional optimization. In the case of MES-generated in-plant 

supply demand the time-related constraint can be defined depending on the scheduled route for the 

first station of the route as follows: 

∀𝑖: 𝜏𝑖,𝑥𝑖,1

𝑚𝑖𝑛 ≤
𝑙𝑖,0,𝑥𝑖,1

𝑣(𝑞𝑖,0,𝑥𝑖,1
)

≤ 𝜏𝑖,𝑥𝑖,1

𝑚𝑎𝑥 (58) 
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where 𝜏𝑖,𝑥𝑖,1

𝑚𝑖𝑛  is the lower limit of the arrival time of the milk-run trolley to the first station of the 

scheduled route i, 𝜏𝑖,𝑥𝑖,1

𝑚𝑎𝑥 is the upper limit of the arrival time of the milk-run trolley to the first station 

of the scheduled route i, 𝑣(𝑞𝑖,0,𝑥𝑖,1
) is the velocity of the milk-run trolley depending on the loading 

between the milk-run trolley depot and the first station of route i. 

In the same way, the time limit for the stations before the last station is as follows: 

∀𝑖, , 𝑗𝑖
∗: 𝜏𝑖,𝑥𝑖,𝑗𝑖

∗
𝑚𝑖𝑛 ≤

𝑙𝑖,0,𝑥𝑖,1

𝑣(𝑞𝑖,0,𝑥𝑖,1
)

+
∑ 𝑙𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1

𝑗𝑖
∗

𝑗=1

𝑣(𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1
)

≤ 𝜏𝑖,𝑥𝑖,𝑗𝑖
∗

𝑚𝑎𝑥  (59) 

where 𝑗𝑖
∗ is a station between the first station and the depot of the milk-run trolley and 0 < 𝑗𝑖

∗ <

𝑖𝑚𝑎𝑥 − 1, 𝑣 (𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1
) is the velocity of the milk-run trolley depending on the loading between 

station j and j+1. 

Time-related constraints are defined for the depot of the milk-run trolley: 

∀𝑖: 𝜏𝑖,𝑥𝑖,𝑖𝑚𝑎𝑥

𝑚𝑖𝑛 ≤
𝑙𝑖,0,𝑥𝑖,1

𝑣(𝑞𝑖,0,𝑥𝑖,1
)

+
∑ 𝑙𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1

𝑖𝑚𝑎𝑥−1
𝑗=1

𝑣(𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1
)

+
𝑙𝑖,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0

𝑣(𝑞,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0)
≤ 𝜏𝑖,𝑥𝑖,𝑖𝑚𝑎𝑥

𝑚𝑎𝑥  (60) 

In the case of a conventional milk-run-based in-plant supply, new supply demands are assigned to 

new supply routes, which means that new milk-runs must be initialized, and this can lead to a 

significantly increased cost. In the case of conventional in-plant supply, the time-related constraints 

can be taken into consideration, where the number of routes can be increased by the number of 

demands generated by the supervisory level. 

The time-related constraint for the first station of the routes after adding new milk-runs based on the 

real-time supply demands to the scheduled supply demands can be defined as follows: 

∀𝜎: 𝜏𝜎,𝑥𝜎,1
𝑚𝑖𝑛 ≤

𝑙𝜎,0,𝑥𝜎,1

𝑣(𝑞𝜎,0,𝑥𝜎,1)
≤ 𝜏𝜎,𝑥𝜎,1

𝑚𝑎𝑥  and 𝜎 = 𝑚 + 𝜉, (61) 

where 𝜎 is the number of routes after adding new milk-runs based on the real-time in-plant supply 

demand, 𝜉 is the number of supply demands generated by the supervisory level. 

In the same way, the time limit for the stations before the last station after adding new milk-runs 

based on the real-time supply-demand is as follows: 

∀𝜎, 𝑗𝜎
∗ : 𝜏𝜎,𝑥𝜎,𝑗𝜎

∗
𝑚𝑖𝑛 ≤

𝑙𝜎,0,𝑥𝜎,1

𝑣(𝑞𝜎,0,𝑥𝜎,1
)

+
∑ 𝑙𝜎,𝑥𝜎,𝑗,𝑥𝜎,𝑗+1

𝑗𝜎
∗

𝑗=1

𝑣(𝑞𝜎,𝑥𝜎,𝑗,𝑥𝜎,𝑗+1
)

≤ 𝜏𝜎,𝑥𝜎,𝑗𝜎
∗

𝑚𝑎𝑥  (62) 

The case of conventional scheduling of real-time in-plant supply demands time-related constraints 

are defined for the depot of the milk-run trolley after adding new milk-runs based on the real-time 

supply-demand as follows: 

∀𝜎: 𝜏𝜎,𝑥𝜎,𝜎𝑚𝑎𝑥

𝑚𝑖𝑛 ≤
𝑙𝜎,0,𝑥𝜎,1

𝑣(𝑞𝜎,0,𝑥𝜎,1
)

+
∑ 𝑙𝜎,𝑥𝜎,𝑗,𝑥𝜎,𝑗+1

𝜎𝑚𝑎𝑥
𝑗=1

𝑣(𝑞𝜎,𝑥𝜎,𝑗,𝑥𝜎,𝑗+1
)

+
𝑙𝜎,𝑥𝜎,𝜎𝑚𝑎𝑥 ,0

𝑣(𝑞,𝑥𝜎,𝜎𝑚𝑎𝑥 ,0)
≤ 𝜏𝜎,𝑥𝜎,𝜎𝑚𝑎𝑥

𝑚𝑎𝑥  (63) 

where 𝜎𝑚𝑎𝑥 is the number of milk-run routed after adding new milk-runs to the MES-based scheduled 

routes. 

The capacity-based constraint takes the capacity of the milk-run trolleys into consideration. In the 

case of MES data-based in-plant supply optimization the capacity-based constraint can be defined as 

follows: 

in the case of the first station: 
∀𝑖: 𝑞𝑖,0,𝑥𝑖,1

≤ 𝑞𝑖
𝑚𝑎𝑥 (64) 

in the case of the station between the start and end point of the route (these points are generally in the 

milk-run trolley depot): 

∀𝑖, 𝑗𝑖
∗: 𝑞𝑖,0,𝑥𝑖,1

+ ∑ 𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1

𝑗𝑖
∗

𝑗=1 ≤ 𝑞𝑖
𝑚𝑎𝑥  (65) 

in the case of the last station of the route (generally in the milk-run trolley depot after arrival): 

∀𝑖: 𝑞𝑖,0,𝑥𝑖,1
+ 𝑞,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0 + ∑ 𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1

𝑖𝑚𝑎𝑥−1
𝑗=1 ≤ 𝑞𝑖

𝑚𝑎𝑥    (66) 

This capacity-based constraint can be transformed to take real-time demands added to the scheduled 

route into consideration: 
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in the case of the first station: 
∀𝜎: 𝑞𝜎,0,𝑥𝜎,1

≤ 𝑞𝜎
𝑚𝑎𝑥   (67) 

in the case of the station between the start and end point of the route (these points are generally in the 

milk-run trolley depot): 

∀𝜎, 𝑗𝜎
∗ : 𝑞𝜎,0,𝑥𝜎,1

+ ∑ 𝑞𝜎,𝑥𝜎,𝑗,𝑥𝜎,𝑗+1

𝑗𝜎
∗

𝑗=1 ≤ 𝑞𝜎
𝑚𝑎𝑥   (68) 

in the case of the last station of the route (generally in the milk-run trolley depot after arrival): 
∀𝜎: 𝑞𝜎,0,𝑥𝜎,1

+ 𝑞,𝑥𝜎,𝜎𝑚𝑎𝑥 ,0 + ∑ 𝑞𝜎,𝑥𝜎,𝑗,𝑥𝜎,𝑗+1

𝜎𝑚𝑎𝑥
𝑗=1 ≤ 𝑞𝜎

𝑚𝑎𝑥   (69) 

Sequence-related constraints of the conventional optimization. I can also describe sequencing-related 

constraints, where specific sequences of stations can be predefined. This sequencing-related 

constraint can be written as follows in the case of MES data-based optimization using an ∃(𝑥)𝑃(𝑥) 

existential quantifier: 
∀𝑖, 𝑗: ∃(𝑥𝑖,𝑗)𝑥𝑖,𝑗+1 = 𝑟𝑖,𝑗    (70) 

where 𝑟𝑖,𝑗 defines the succeeded station. 

This sequence-based constraint can be transformed to take real-time demands added to the scheduled 

route into consideration: 
∀𝜎, 𝑗: ∃(𝑥𝜎,𝑗)𝑥𝜎,𝑗+1 = 𝑟𝜎,𝑗    (71) 

Energy consumption-related constraints of conventional optimization. The milk-run trolleys are 

working with electricity; therefore, the capacity of their batteries is also an important energy-based 

constraint, which is especially important in the case of heavy loadings and long in-plant supply 

distances.  

This energy consumption-based constraint can be defined in the case of conventional in-plant supply 

routing and scheduling as follows: 

in the case of MES data-based conventional routing and scheduling: 

∀𝑖: 𝑙𝑖,0,𝑥𝑖,1
∙ 𝑞𝑖,0,𝑥𝑖,1

∙ 𝑒(𝑞𝑖,0,𝑥𝑖,1
) + 𝑙𝑖,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0 ∙ 𝑞,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0 ∙ 𝑒(𝑞,𝑥𝑖,𝑖𝑚𝑎𝑥 ,0) + ∑ 𝑙𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1

∙ 𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1
∙

𝑖𝑚𝑎𝑥−1
𝑗=1

𝑒(𝑞𝑖,𝑥𝑖,𝑗,𝑥𝑖,𝑗+1
) ≤ 𝑏𝑐𝑖    

(72) 

in the case of conventional optimization of MES data-based and added real-time demands: 
∀𝜎: 𝑙𝜎,0,𝑥𝜎,1

∙ 𝑞𝜎,0,𝑥𝜎,1
∙ 𝑒(𝑞𝜎,0,𝑥𝜎,1

) + 𝑙𝜎,𝑥𝜎,𝜎𝑚𝑎𝑥 ,0 ∙ 𝑞,𝑥𝜎,𝜎𝑚𝑎𝑥 ,0 ∙ 𝑒(𝑞,𝑥𝜎,𝜎𝑚𝑎𝑥 ,0) + ∑ 𝑙𝜎,𝑥𝜎,𝑗,𝑥𝜎,𝑗+1
∙ 𝑞𝜎,𝑥𝜎,𝑗,𝑥𝜎,𝑗+1

∙
𝜎𝑚𝑎𝑥
𝑗=1

𝑒(𝑞𝜎,𝑥𝜎,𝑗,𝑥𝜎,𝑗+1
) ≤ 𝑏𝑐𝜎    (73) 

where 𝑏𝑐𝑖 is the available capacity of the battery in the case of MES data-based routing and 𝑏𝑐𝜎 is 

the available capacity of the battery in the case of conventional integrated routing of MES data-based 

and real-time in-plant supply optimization. 

5.5.2. Real-time milk-run-based in-plant supply optimization 

The optimization model of the Industry 4.0 technologies supported by real-time milk-run-based in-

plant supply is presented in Figure 53. 
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Figure 53: Industry 4.0 technologies supported real-time milk-run-based in-plant supply optimization model 

The model includes the following main parts: 

• the objective function (minimization of the energy consumption and emission after adding 

MES data-based and real-time in-plant supply demands), 

• time-based constraints (both the MES data-based and the real-time supply demands must be 

performed within a predefined specific time window), 

• capacity-based constraints (it is not allowed to exceed the capacity of the milk-run trolleys), 

• sequence-based constraints (the predefined sequences of stations must be taken into 

consideration), 

• energy-based constraints (the available energy of the battery must be taken into 

consideration), 

• decision variable (optimal routing and scheduling of MES-based and real-time supply 

demands). 

In the case of Industry 4.0 technologies-based optimization, the real-time data regarding failures and 

status can be taken into consideration and the existing, scheduled routes can be rescheduled in real-

time, therefore no additional milk-run routes must be started. 

In the case of the Industry 4.0 technologies-based in-plant supply operation, it is possible to optimize 

the MES data-based scheduled routes and modify the existing routes re-time to add the new in-plant 

supply demands generated by the supervisory level. In this case, the objective function can be 

transformed into a new objective function, where the milk-runs perform not only the MES data-based 

supply demands but also the real-time demands generated by the supervisory level: 

𝐶𝐸𝐶 = ∑ [𝑙𝑖,0,𝑥𝑖,1
∗ ∙ 𝑞𝑖,0,𝑥𝑖,1

∗ ∙ 𝑒(𝑞𝑖,0,𝑥𝑖,1
∗ ) + 𝑙𝑖,𝑥

𝑖,𝑖𝑚𝑎𝑥
∗

∗ ,0 ∙ 𝑞,𝑥
𝑖,𝑖𝑚𝑎𝑥

∗
∗ ,0 ∙ 𝑒(𝑞,𝑥

𝑖,𝑖𝑚𝑎𝑥
∗

∗ ,0) + ∑ 𝑙𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗ ∙ 𝑞𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗ ∙
𝑖𝑚𝑎𝑥

∗ −1
𝑗=1

𝑚
𝑖=1

𝑒(𝑞𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗ )] → 𝑚𝑖𝑛        
(74) 

where 𝑥𝛼,𝛽
∗  is and assignment matrix, which is the decision variable of the optimization problem, as 

the ID of 𝛽 station of route 𝛼. based on real-time in-plant supply demands generated by the 
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supervisory level and 𝑖𝑚𝑎𝑥
∗  is the number of stations added to route i including both MES-based and 

supervisory level-based in-plant supply demands. In the case of real-time scheduling, the time-related 

constraints can be modified, because in this case the real-time in-plant supply demands are integrated 

into the MES data-based scheduled routes. 

In the case of real-time in-plant supply optimization, the time-related constraint can be defined 

depending on the scheduled route for the first station of the route as follows: 

∀𝑖: 𝜏𝑖,𝑥𝑖,1
∗

𝑚𝑖𝑛 ≤
𝑙𝑖,0,𝑥𝑖,1

∗

𝑣(𝑞𝑖,0,𝑥𝑖,1
∗ )

≤ 𝜏𝑖,𝑥𝑖,1
∗

𝑚𝑎𝑥    (75) 

where 𝜏𝑖,𝑥𝑖,1
∗

𝑚𝑖𝑛  is the lower limit of the arrival time of the milk-run trolley to the first station of the 

scheduled route i after adding all real-time supply-demand generated by the supervisory level, 𝜏𝑖,𝑥𝑖,1
∗

𝑚𝑎𝑥 

is the upper limit of the arrival time of the milk-run trolley to the first station of the scheduled route i 

after adding all real-time supply-demand generated by the supervisory level, 𝑣 (𝑞𝑖,0,𝑥𝑖,1
∗ ) is the 

velocity of the milk-run trolley depending on the loading between the milk-run trolley depot and the 

first station of route i after adding all real-time supply-demand generated by the supervisory level. If 

the rescheduling of the in-plant supply routes is performed after the milk-run trolley passes the first 

station of their route, then 𝜏𝑖,𝑥𝑖,1
∗

𝑚𝑖𝑛 = 𝜏𝑖,𝑥𝑖,1

𝑚𝑖𝑛  and 𝜏𝑖,𝑥𝑖,1
∗

𝑚𝑎𝑥 = 𝜏𝑖,𝑥𝑖,1

𝑚𝑎𝑥. In the case of real-time in-plant supply 

optimization, the time limit in the same way for the stations before the last station is as follows: 

∀𝑖, 𝑗𝑖
∗∗: 𝜏𝑖,𝑥

𝑖,𝑗𝑖
∗∗

∗
𝑚𝑖𝑛 ≤

𝑙𝑖,0,𝑥𝑖,1
∗

𝑣(𝑞𝑖,0,𝑥𝑖,1
∗ )

+
∑ 𝑙𝑖,𝑥𝑖,𝑗

∗ ,𝑥𝑖,𝑗+1
∗

𝑗𝑖
∗∗

𝑗=1

𝑣(𝑞𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗ )
≤ 𝜏𝑖,𝑥

𝑖,𝑗𝑖
∗∗

∗
𝑚𝑎𝑥      (76) 

where 𝑗𝑖
∗∗ is a station between the first station and the depot of the milk-run trolley after adding the 

real-time in-plant supply demands to the scheduled milk-run. 

Also, these time-related constraints are defined for the depot of the milk-run trolley as follows: 

∀𝑖: 𝜏𝑖,𝑥
𝑖,𝑖𝑚𝑎𝑥

∗
∗

𝑚𝑖𝑛 ≤
𝑙𝑖,0,𝑥𝑖,1

∗

𝑣(𝑞𝑖,0,𝑥𝑖,1
∗ )

+
∑ 𝑙𝑖,𝑥𝑖,𝑗

∗ ,𝑥𝑖,𝑗+1
∗

𝑖𝑚𝑎𝑥−1
∗

𝑗=1

𝑣(𝑞𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗ )
+

𝑙𝑖,𝑥
𝑖,𝑖𝑚𝑎𝑥

∗
∗ ,0

𝑣(𝑞,𝑥
𝑖,𝑖𝑚𝑎𝑥

∗
∗ ,0)

≤ 𝜏𝑖,𝑥
𝑖,𝑖𝑚𝑎𝑥

∗
∗

𝑚𝑎𝑥     (77) 

The capacity-based constraint takes the capacity of the milk-run trolleys into consideration. In the 

case of the scheduling and routing of both MES data-based and real-time supply demands, the 

capacity-based constraint can be defined as follows: 

in the case of the first station: 
∀𝑖: 𝑞𝑖,0,𝑥𝑖,1

∗ ≤ 𝑞𝑖
𝑚𝑎𝑥     (78) 

In the case of the stations between the start and end point of the route (these points are generally in 

the milk-run trolley depot): 

∀𝑖, 𝑗𝑖
∗∗: 𝑞𝑖,0,𝑥𝑖,1

∗ + ∑ 𝑞𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗
𝑗𝑖

∗∗

𝑗=1 ≤ 𝑞𝑖
𝑚𝑎𝑥     (79) 

In the case of the last station of the route (generally in the milk-run trolley depot): 

∀𝑖: 𝑞𝑖,0,𝑥𝑖,1
∗ + 𝑞,𝑥𝑖,𝑖𝑚𝑎𝑥

∗ ,0 + ∑ 𝑞𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗
𝑖𝑚𝑎𝑥−1
𝑗=1 ≤ 𝑞𝑖

𝑚𝑎𝑥     (80) 

Sequencing-related constraints are described, where specific sequences of stations can be predefined 

including existing in-plant supply tasks and new real-time tasks to be scheduled. This sequencing-

related constraint can be written as follows: 
∀𝑖, 𝑗: ∃(𝑥𝑖,𝑗

∗ )𝑥𝑖,𝑗+1
∗ = 𝑟𝑖,𝑗     (81) 

This energy consumption-based constraint can be defined in the case of the Industry 4.0-supported 

real-time in-plant supply routing and scheduling as follows: 

∀𝑖: 𝑙𝑖,0,𝑥𝑖,1
∗ ∙ 𝑞𝑖,0,𝑥𝑖,1

∗ ∙ 𝑒(𝑞𝑖,0,𝑥𝑖,1
∗ ) + 𝑙𝑖,𝑥

𝑖,𝑖𝑚𝑎𝑥
∗

∗ ,0 ∙ 𝑞,𝑥
𝑖,𝑖𝑚𝑎𝑥

∗
∗ ,0 ∙ 𝑒(𝑞,𝑥

𝑖,𝑖𝑚𝑎𝑥
∗

∗ ,0) + ∑ 𝑙𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗ ∙ 𝑞𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗ ∙
𝑖𝑚𝑎𝑥

∗ −1
𝑗=1

𝑒(𝑞𝑖,𝑥𝑖,𝑗
∗ ,𝑥𝑖,𝑗+1

∗ ) ≤ 𝑏𝑐𝑖     
(82) 

5.5.3. Optimization numerical analysis  

Within the frame of this section, the above-described in-plant supply models are validated using two 

different scenarios. The optimization of the scenarios was performed by Excel Evolutive Solver, but 
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in the case of large-scale problems other solvers for NP-hard problems can be used. The first scenario 

analyses the conventional scheduling and routing of MES data-based in-plant supply and the 

conventional scheduling and routing of real-time in-plant supply generated by the supervisory level, 

while the second scenario focuses on the computational results of real-time milk-run-based in-plant 

supply optimization supported by Industry 4.0 technologies. 

The input parameters of both optimization problems are the followings: 

• the layout of the plant includes the manufacturing zone, warehousing zone, and milk-run 

trolley depot, which defines the location of each manufacturing and logistics resource and the 

distances among them. 

• MES data-based supply demands for a predefined specific time window (Table 31). 

• sources and destinations of MES data-based supply demands (Table 31). 

• predefined specific time frames for MES data-based supply demands (Table 31). 

• real-time supply demands for a predefined specific time window (Table 32). 

• sources and destinations of real-time generated supply demands (Table 32). 

• predefined specific time frames for real-time generated supply demands (Table 32). 

• capacity and net weight of milk-run trolleys. 

• the average velocity of milk-run trolleys. 

• specific energy consumption of transportation of components by milk-run trolleys depending 

on the weight of loading. 

• specific energy consumption of material handling operations (loading and unloading of milk-

run trolleys), depending on the weight of components. 

• The following assumptions are taken into consideration in the numerical analysis: 

• it is not allowed to exceed time-related constraints (time windows for supply demands), 

• it is not allowed to exceed the capacity of milk-run trolleys, 

• the number of available milk-run trolleys is limited, and it is not allowed to exceed, 

• the MES-generated supply demands are not changing within a time window, 

• it is not allowed to exceed the available energy of milk-run trolleys (battery capacity is 

limited), 

• the velocity of milk-run trolleys is constant, but in further models, acceleration can also be 

taken into consideration, 

• real-time generated supply demands are scheduled within the current time window. 

Table 31: MES data-based supply demands of the in-plant supply optimization problem 

C_ID1 Type2 From3 To4 LOAD5 TFRAME6 C_ID1 Type2 From3 To4 LOAD5 TFRAME6 

C_01 LO C_00 - 9 03:50:00-03:53:00 C_10 LO C_00 - 8 03:59:00-04:04:00 

C_02 UNLO - C_10 40 03:40:00-03:42:00 C_10 UNLO - C_00 7 04:24:00-04:25:00 

C_02 LO C_00 - 2 03:52:00-03:53:00 C_11 LO C_00 - 10 04:00:00-04:04:00 

C_02 UNLO - C_04 17 03:52:00-03:57:00 C_11 UNLO - C_16 8 04:02:00-04:05:00 

C_03 LO C_14 - 21 03:42:00-03:45:00 C_11 LO C_07 - 7 04:24:00-04:27:00 

C_03 UNLO - C_00 15 03:42:00-03:44:00 C_11 UNLO - C_00 36 04:27:00-04:30:00 

C_03 LO C_00 - 9 03:54:00-03:57:00 C_12 LO C_00 - 12 03:28:00-03:30:00 

C_03 LO C_00 - 18 04:21:00-04:24:00 C_12 LO C_00 - 12 03:47:00-03:50:00 

C_04 LO C_07 - 14 03:44:00-03:47:00 C_12 UNLO - C_13 8 04:15:00-04:17:00 

C_04 LO C_02 - 17 03:55:00-03:57:00 C_13 LO C_12 - 8 04:15:00-04:20:00 

C_04 UNLO - C_00 8 03:55:00-03:57:00 C_13 UNLO - C_08 14 04:16:00-04:20:00 

C_04 UNLO - C_00 5 04:22:00-04:24:00 C_14 UNLO - C_03 21 03:30:00-03:32:00 

C_05 UNLO - C_00 5 03:56:00-03:59:00 C_14 LO C_00 - 2 04:06:00-04:08:00 

C_05 LO C_00 - 15 03:57:00-04:04:00 C_14 LO C_16 - 20 04:30:00-04:35:00 

C_06 LO C_07 - 11 03:58:00-04:04:00 C_15 UNLO - C_00 10 03:46:00-03:50:00 

C_07 LO C_00 - 21 03:35:00-03:40:00 C_16 LO C_00 - 25 03:30:00-03:35:00 

C_07 UNLO - C_04 14 03:35:00-03:40:00 C_16 LO C_11 - 8 04:03:00-04:05:00 

C_07 LO C_00 - 8 03:48:00-03:50:00 C_16 LO C_00 - 10 04:28:00-04:30:00 

C_07 UNLO - C_06 11 03:48:00-03:50:00 C_16 UNLO - C_14 20 04:30:00-04:32:00 

C_07 UNLO - C_11 7 04:18:00-04:20:00 C_17 UNLO - C_00 7 04:03:00-04:06:00 
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C_08 LO C_13 - 14 04:19:00-04:22:00 C_17 LO C_00 - 16 04:27:00-04:30:00 

C_10 LO C_02 - 40 03:45:00-03:47:00 C_17 UN - C_00 2 04:28:00-04:30:00 
1 C_ID=Identification number of the assembly or manufacturing cell. 2 Type=Type of the material handling operation at 

the assembly or manufacturing cell (LO=loading and UNLO=Unloading). 3 From=Source of the components to be 

transported to the assembly or manufacturing cell. 4 To=Destination of the components loaded at a specific assembly or 

manufacturing cell. 5 LOAD=Load of the milk-run trolley [LU]. 6 CLO=Cumulative loading after passing the specific station 

[LU]. 

Table 32: Real-time generated supply demands of the in-plant supply optimization problem 

C_ID1 Type2 From3 To4 LOAD5 TFRAME6 

C_01 UNLO - C_17 12 03:40:00-03:42:00 

C_17 LO C_01 - 12 03:46:00-03:50:00 

C_17 UNLO - C_15 24 04:03:00-04:06:00 

C_15 LO C_17 - 24 04:03:00-04:08:00 

C_07 UNLO C_00 - 34 04:15:00-04:17:00 

C_05 UNLO - C_15 21 04:20:00-04:30:00 

C_15 LO C_05 - 21 04:22:00-04:35:00 

5.5.4. Conventional milk-run-based in-plant supply optimization 

 

The conventional milk-run-based in-plant supply includes two main phases. Within the first phase, 

the MES data-based supply demands are scheduled, while in the second phase, real-time generated 

supply demands are scheduled and assigned to new supply routes of milk-run trolleys. 

In the first part of scenario 1, three different milk-run routes are defined for MES data-based in-plant 

supply demands. These routes represent a theoretical scenario. This part of scenario 1 takes only the 

MES data-based supply demands of the in-plant supply optimization problem into consideration 

(Table 31). In the case of route 1, 10 in-plant supply demands are performed and all of them are 

between the predefined time window (Figure 54 and Table 33).  

 
Figure 54: First route of the conventional milk-run-based in-plant supply includes MES data-based supply demands 

Table 33: Numerical results of predefined in-plant material supply operations within route 1 

S_ID* C_ID1 Type2 From3 To4 LOAD5 CLO6 TFRAME7 TSCHED8 ECT9 ECH10 EC11 

S_00 C_00 - - - 100 158 - 3:27:36   49.5 49.5 

S_01 C_12 LO C_00 - 12 146 03:28:00-03:30:00 3:29:10 65.8 10.2 125.5 

S_02 C_14 UNLO - C_03 21 167 03:30:00-03:32:00 3:31:35 111.4 17.9 254.9 

S_03 C_16 LO C_00 - 25 142 03:30:00-03:35:00 3:34:00 127.4 21.4 403.7 

S_04 C_07 LO C_00 - 21 121 03:35:00-03:40:00 3:38:04 203.6 17.9 625.2 

S_05 C_07 UNLO - C_04 14 135 03:35:00-03:40:00 3:39:28 42.0 12.0 679.1 
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S_06 C_02 UNLO - C_10 40 175 03:40:00-03:43:00 3:40:58 53.1 34.2 766.4 

S_07 C_03 LO C_14 - 21 154 03:42:00-03:45:00 3:42:38 80.9 17.9 865.2 

S_08 C_03 UNLO - C_00 15 169 03:42:00-03:46:00 3:43:10 0.0 12.8 878.1 

S_09 C_04 LO C_07 - 14 155 03:44:00-03:47:00 3:44:10 31.3 12.0 921.3 

S_10 C_10 LO C_02 - 40 115 03:45:00-03:48:00 3:46:14 96.8 34.2 1052.2 

S_11 C_15 UNLO - C_00 10 125 03:46:00-03:50:00 3:48:50 95.7 8.5 1156.5 

S_12 C_00 - - - 0 125 - 3:51:56 130.1 21.4 1307.9 
* S_ID=Identification number of the stop of milk-run trolleys. 1 C_ID=Identification number of the assembly or manufacturing cell. 2 

Type=Type of the material handling operation at the assembly or manufacturing cell (LO=loading and UNLO=Unloading). 3 

From=Source of the components to be transported to the assembly or manufacturing cell. 4 To=Destination of the components loaded 

at a specific assembly or manufacturing cell. 5 LOAD=Load of the milk-run trolley in the loading unit [LU]. 6 CLO=Cumulative loading 

after passing the specific station in the loading unit. 7 TFRAME=Predefined time frame; it is not allowed to exceed this lower and 

upper limit of the delivery time window. 8 TSCHED=Scheduled arrival and departure times of the milk-run trolley at the assembly or 

manufacturing cells. 9 ECT=Transportation-related energy consumption of the milk-run trolley. 10 ECH=Material handling (loading 

and unloading) related energy consumption at the assembly or manufacturing cells. 11 EC=Total energy consumption including 

transportation and material handling-related energy consumption. 

In the case of route 2, 17 in-plant supply demands are performed and all of them were between the 

predefined time window (Figure 55 and Table 34). 

 
Figure 55: second route of the conventional milk-run-based in-plant supply  

Table 34: Numerical results of predefined in-plant material supply operations within route 2 

S_ID* S_ID1 Type2 From3 To4 LOAD5 CLO6 TFRAME7 TSCHED8 ECT9 ECH10 EC11 

S_00 C_00 - - - 100 175 - 3:45:40  - 64.1 64.1 

S_01 C_12 LO C_00 - 12 163 03:47:00-03:50:00 3:47:14 72.8 10.2 147.1 

S_02 C_07 LO C_00 - 8 155 03:48:00-03:50:00 3:48:27 45.2 6.8 199.2 

S_03 C_07 UNLO - C_06 11 166 03:48:00-03:50:00 3:49:50 53.8 9.4 262.4 

S_04 C_01 LO C_00 - 9 157 03:50:00-03:53:00 3:51:20 65.3 7.7 335.3 

S_05 C_02 LO C_00 - 2 155 03:52:00-03:53:00 3:52:44 54.5 1.7 391.5 

S_06 C_02 UNLO - C_04 17 172 03:52:00-03:57:00 3:53:26 10.8 14.5 416.7 

S_07 C_03 LO C_00 - 9 163 03:54:00-03:57:00 3:55:07 79.6 7.7 504.0 

S_08 C_04 LO C_02 - 17 146 03:55:00-03:57:00 3:56:06 30.2 14.5 548.7 

S_09 C_04 UNLO - C_00 8 154 03:55:00-03:57:00 3:56:38 0.0 6.8 555.5 

S_10 C_05 UNLO - C_00 5 159 03:56:00-03:59:00 3:57:51 42.7 4.3 602.5 

S_11 C_05 LO C_00 - 15 144 03:57:00-04:04:00 3:58:54 33.1 12.8 648.4 

S_12 C_06 LO C_07 - 11 133 03:58:00-04:04:00 3:59:50 23.3 9.4 681.1 

S_13 C_10 LO C_00 - 8 125 03:59:00-04:04:00 4:00:53 27.7 6.8 715.6 

S_14 C_11 LO C_00 - 10 115 04:00:00-04:04:00 4:02:16 43.4 8.5 767.5 

S_15 C_11 UNLO - C_16 8 123 04:02:00-04:05:00 4:02:48 0.0 6.8 774.3 

S_16 C_17 UNLO - C_00 7 130 04:03:00-04:06:00 4:03:51 25.6 6.0 805.9 

S_17 C_16 LO C_11 - 8 122 04:03:00-04:06:00 4:04:54 27.1 6.8 839.8 

S_18 C_14 LO C_00 - 2 120 04:06:00-04:11:00 4:07:33 104.4 1.7 945.9 

S_19 C_00 - - - 0 120 - 4:09:44 80.5 17.1 1043.5 
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In the case of route 3, 14 in-plant supply demands are performed and all of them were between the 

predefined time window (Figure 56 and Table 35). 

 
Figure 56: third route of the conventional milk-run-based in-plant supply includes MES data-based supply demands 

Table 35: Numerical results of the scheduling of predefined in-plant material supply operations performed by the milk-run trolley 

within route 3 

S_ID* S_ID1 Type2 From3 To4 LOAD5 CLO6 TFRAME7 TSCHED8 ECT9 ECH10 EC11 

S_00 C_00 - - - 100 144  4:13:51   37.6 37.6 

S_01 C_12 UNLO - C_13 8 152 04:15:00-04:17:00 4:15:25 59.9 6.8 104.3 

S_02 C_13 LO C_12 - 8 144 04:15:00-04:20:00 4:17:12 77.3 6.8 188.5 

S_03 C_13 UNLO - C_08 14 158 04:16:00-04:20:00 4:17:44 0.0 12.0 200.5 

S_04 C_07 UNLO - C_11 7 165 04:18:00-04:21:00 4:19:07 54.8 6.0 261.3 

S_05 C_08 LO C_13 - 14 151 04:19:00-04:22:00 4:20:27 53.4 12.0 326.6 

S_06 C_03 LO C_00 - 18 133 04:21:00-04:24:00 4:22:18 80.3 15.4 422.3 

S_07 C_04 UNLO - C_00 5 138 04:22:00-04:25:00 4:23:18 24.6 4.3 451.2 

S_08 C_10 UNLO - C_00 7 145 04:24:00-04:30:00 4:24:55 60.6 6.0 517.8 

S_09 C_11 LO C_07 - 7 138 04:24:00-04:30:00 4:26:45 77.1 6.0 600.9 

S_10 C_11 UNLO - C_00 36 174 04:27:00-04:30:00 4:27:17 0.0 30.7 631.6 

S_11 C_17 LO C_00 - 16 158 04:27:00-04:33:00 4:28:20 36.2 13.7 681.5 

S_12 C_17 UN - C_00 2 160 04:28:00-04:33:00 4:28:52 0.0 1.7 683.2 

S_13 C_16 LO C_00 - 10 150 04:28:00-04:33:00 4:29:55 33.3 8.5 725.1 

S_14 C_16 UNLO - C_14 20 170 04:30:00-04:33:00 4:30:27 0.0 17.1 742.1 

S_15 C_14 LO C_16 - 20 150 04:30:00-04:37:00 4:33:06 145.5 17.1 904.7 

S_16 C_00 - - - 0 150  4:35:17 100.6 42.7 1048.0 

The loading of milk-run trolleys is shown in Figure 57. As the figure demonstrates, the conventional 

optimization of MES-generated supply demands was successful, because not only the time window 

for each supply demand was taken into consideration, but also the predefined loading capacity of 

milk-trolleys was not exceeded. 
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Figure 57: The optimized loading capacity of the three milk-run trolleys 

The cumulative energy consumption of the three routes is shown in Figure 58. The total energy 

consumption was computed for 100 routes. The total energy consumption including transportation 

and material handling operations was 1307.9 kW for the first route, 1043.5 kW for the second route, 

and 1048 kW for the third route, which means a total energy consumption of 3399.4 kW out of which 

2661.5 kW is for transportation and 737.9 kW is for loading and unloading of components. The 

loading and unloading operations include all material handling operations both in the warehouse and 

at the stop stations of the milk-run trolleys. 

 
Figure 58: Cumulative energy consumption of the three milk-run routes in the conventional real-time case  

In the second part of scenario 1, three different milk-run routes are defined for real-time generated 

in-plant supply demands. This part of scenario 1 takes only real-time generated supply demands of 

the in-plant supply optimization problem into consideration (Table 2). In the case of route 1, 2 in-

plant supply demands are performed and all of them are between the predefined time window (Figure 

59 and Table 36). 

It is not possible to integrate the supply of real-time generated demands into one milk-run route 

because the defined time windows are different (the difference between the minimum of the lower 

time limits and the maximum of the upper time limits is 55 minutes) and it is not allowed for the 

milk-run trolleys to wait in the manufacturing zone. 
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Figure 59: The first route of the conventional milk-run-based in-plant supply includes real-time supply demand 

Table 36: Numerical results of the conventional optimization of real-time supply demands within the additional route 4 

S_ID* C_ID1 Type2 From3 To4 LOAD5 CLO6 TFRAME7 TSCHED8 ECT9 ECH10 EC11 

S_00 C_00 - - - 100 100 - 3:38:20   0.0 0.0 

S_01 C_01 UNLO - C_17 12 112 03:40:00-03:42:00 3:41:19 99.4 10.2 109.7 

S_02 C_17 LO C_01 - 12 100 03:46:00-03:50:00 3:46:39 217.6 10.2 337.5 

S_03 C_00 - - - 0 100 - 3:51:28 173.4 0.0 510.9 

In the case of route 2, 2 in-plant supply demands are performed and all of them are between the 

predefined time window (Figure 60 and Table 37). 

 
Figure 60: The second route of the conventional milk-run-based in-plant supply includes real-time supply demand 

Table 37: Numerical results of the conventional optimization of real-time supply demands within additional route 5 

S_ID* C_ID1 Type2 From3 To4 LOAD5 CLO6 TFRAME7 TSCHED8 ECT9 ECH10 EC11 

S_00 C_00 - - - 100 100 - 4:01:40   0.0 0.0 

S_01 C_17 UNLO - C_15 24 124 04:03:00-04:06:00 4:06:29 173.4 20.5 193.9 

S_02 C_15 LO C_17 - 24 100 04:03:00-04:08:00 4:08:44 86.0 20.5 300.5 

S_03 C_00 - - - 0 100 - 4:11:50 104.1 0.0 404.5 

In the case of route 3, 3 in-plant supply demands are performed and all of them are between the 

predefined time window (Figure 61 and Table 38). 
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Figure 61: The third route of the conventional milk-run-based in-plant supply includes real-time supply demand 

Table 38: Numerical results of the conventional optimization of real-time supply demands within additional route 6 

S_ID* C_ID1 Type2 From3 To4 LOAD5 CLO6 TFRAME7 TSCHED8 ECT9 ECH10 EC11 

S_00 C_00 - - - 100 134 - 4:13:51   29.0 29.0 

S_01 C_07 LO C_00 - 34 100 04:15:00-04:17:00 4:16:06 93.0 29.0 151.0 

S_02 C_05 UNLO - C_15 21 121 04:20:00-04:30:00 4:20:44 166.5 17.9 335.5 

S_03 C_15 LO C_05 - 21 100 04:22:00-04:35:00 4:23:23 103.5 17.9 456.9 

S_04 C_00 - - - 0 100 - 4:25:38 69.4 0.0 526.3 

The conventional routing of real-time generated supply demands was successful because not only the 

time window for each supply demand was taken into consideration but also the predefined loading 

capacity of milk-run trolleys was not exceeded (the loading of milk-run trolleys was quite low because 

there were only 2 or 3 supply demands assigned to a milk-run route). The total energy consumption 

was computed for 100 routes. The total energy consumption including transportation and material 

handling operations was 510.9 kW for the first route, 404.5 kW for the second route, and 526.3 kW 

for the third route, which means a total energy consumption of 1441.8 kW out of which 923.3 kW is 

for transportation and 518.4 kW is for loading and unloading of components. The loading and 

unloading operations include all material handling operations both in the warehouse and at the stop 

stations of the milk-run trolleys. 

5.5.5. Real-time milk-run-based in-plant supply optimization 

In the first part of scenario 2, three different milk-run routes are defined integrating MES data-based 

in-plant supply demands and real-time supply demands generated by the supervisory level. Industry 

4.0 technologies make it possible to use real-time data to reschedule and reroute existing milk-runs 

by adding the new supply demands. In this case, no additional routes and trolleys are required. This 

part of scenario 1 takes both MES data-based supply demands and real-time generated demands. In 

the case of route 1, 12 in-plant supply demands are performed and all of them are between the 

predefined time window (Figure 62 and Table 39). It was possible to integrate one unloading 

operation at C_01 and one loading operation of the same component at C_17. Red lines of the route 

in Figure 62 represent the real-time added routes segments. Colored rows in Table 39 represent the 

real-time added supply demands generated by the supervisory level using the results of the 

optimization based on the digital twin model. 
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Figure 62: The modified first route  

Table 39: Numerical results of real-time generated specific in-plant material supply operations within route 1 

S_ID* C_ID1 Type2 From3 To4 LOAD5 CLO6 TFRAME7 TSCHED8 ECT9 ECH10 EC11 

S_00 C_00 - - - 100 158 - 3:27:36   49.5 49.5 

S_01 C_12 LO C_00 - 12 146 03:28:00-03:30:00 3:29:10 65.8 10.2 125.5 

S_02 C_14 UNLO - C_03 21 167 03:30:00-03:32:00 3:31:35 111.4 17.9 254.9 

S_03 C_16 LO C_00 - 25 142 03:30:00-03:35:00 3:34:00 127.4 21.4 403.7 

S_04 C_07 LO C_00 - 21 121 03:35:00-03:40:00 3:38:04 203.6 17.9 625.2 

S_05 C_07 UNLO - C_04 14 135 03:35:00-03:40:00 3:39:28 42.0 12.0 679.1 

S_06 C_01 UNLO - C_17 12 147 03:40:00-03:42:00 3:40:54 50.0 10.2 739.3 

S_07 C_02 UNLO - C_10 40 187 03:40:00-03:43:00 3:42:25 57.8 34.2 831.3 

S_08 C_03 LO C_14 - 21 166 03:42:00-03:45:00 3:44:05 86.5 17.9 935.7 

S_09 C_03 UNLO - C_00 15 181 03:42:00-03:46:00 3:44:37 0.0 12.8 948.5 

S_10 C_04 LO C_07 - 14 167 03:44:00-03:47:00 3:45:37 33.5 12.0 994.0 

S_11 C_10 LO C_02 - 40 127 03:45:00-03:48:00 3:47:41 104.3 34.2 1132.4 

S_12 C_17 LO C_01 - 12 139 03:46:00-03:50:00 3:48:54 35.2 10.2 1177.9 

S_13 C_15 UNLO - C_00 10 137 03:46:00-03:50:00 3:49:56 88.1 8.5 1274.5 

S_14 C_00 - - - 0 137 - 3:53:02 142.6 31.6 1448.7 

In the case of route 2, 19 in-plant supply demands are performed and all of them are between the 

predefined time window (Figure 63 and Table 40). It was possible to integrate one transshipment 

operation which includes one unloading operation at C_17 and one loading operation with the same 

component at C_15. Red lines of the route in Figure 63 represent the real-time added routes segments. 

The colored rows in Table 40 represent the real-time added supply demands generated by the 

supervisory level using the results of the optimization based on the digital twin model  
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Figure 63: The modified second route  

Table 40: Numerical results of real-time generated specific in-plant material supply operations within route 2 

S_ID* S_ID1 Type2 From3 To4 LOAD5 CLO6 TFRAME7 TSCHED8 ECT9 ECH10 EC11 

S_00 C_00 - - - 100 175 - 3:45:40  - 64.1 64.1 

S_01 C_12 LO C_00 - 12 163 03:47:00-03:50:00 3:47:14 72.8 10.2 147.1 

S_02 C_07 LO C_00 - 8 155 03:48:00-03:50:00 3:48:27 45.2 6.8 199.2 

S_03 C_07 UNLO - C_06 11 166 03:48:00-03:50:00 3:49:50 53.8 9.4 262.4 

S_04 C_01 LO C_00 - 9 157 03:50:00-03:53:00 3:51:20 65.3 7.7 335.3 

S_05 C_02 LO C_00 - 2 155 03:52:00-03:53:00 3:52:44 54.5 1.7 391.5 

S_06 C_02 UNLO - C_04 17 172 03:52:00-03:57:00 3:53:26 10.8 14.5 416.7 

S_07 C_03 LO C_00 - 9 163 03:54:00-03:57:00 3:55:07 79.6 7.7 504.0 

S_08 C_04 LO C_02 - 17 146 03:55:00-03:57:00 3:56:06 30.2 14.5 548.7 

S_09 C_04 UNLO - C_00 8 154 03:55:00-03:57:00 3:56:38 0.0 6.8 555.5 

S_10 C_05 UNLO - C_00 5 159 03:56:00-03:59:00 3:57:51 42.7 4.3 602.5 

S_11 C_05 LO C_00 - 15 144 03:57:00-04:04:00 3:58:54 33.1 12.8 648.4 

S_12 C_06 LO C_07 - 11 133 03:58:00-04:04:00 3:59:50 23.3 9.4 681.1 

S_13 C_10 LO C_00 - 8 125 03:59:00-04:04:00 4:00:53 27.7 6.8 715.6 

S_14 C_11 LO C_00 - 10 115 04:00:00-04:04:00 4:02:16 43.4 8.5 767.5 

S_15 C_11 UNLO - C_16 8 123 04:02:00-04:05:00 4:02:48 0.0 6.8 774.3 

S_16 C_17 UNLO - C_00 7 130 04:03:00-04:06:00 4:03:51 25.6 6.0 805.9 

S_17 C_17 UNLO - C_15 24 154 04:03:00-04:06:00 4:04:23 0.0 20.5 826.4 

S_18 C_16 LO C_11 - 8 146 04:03:00-04:06:00 4:05:26 32.1 6.8 865.3 

S_19 C_15 LO C_17 - 24 122 04:03:00-04:08:00 4:07:10 70.9 20.5 956.7 

S_20 C_14 LO C_00 - 2 120 04:06:00-04:11:00 4:09:11 73.4 1.7 1031.8 

S_21 C_00 - - - 0 120 - 4:11:22 80.5 17.1 1129.3 

In the case of route 3, 17 in-plant supply demands are performed and all of them are between the 

predefined time window (Figure 64 and Table 41). It was possible to integrate one transshipment 

operation and one loading operation. The transshipment includes one unloading operation at C_05 

and one loading operation with the same component at C_15, while the loading operation is 

performed between the warehouse (C_00) and C_07. Red lines of the route in Figure 64 represent the 

real-time added routes segments. The colored rows in Table 41 represent the real-time added supply 

demands generated by the supervisory level using the results of the optimization based on the digital 

twin model.  
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Figure 64: The modified third route 

Table 41: Numerical results of real-time generated specific in-plant material supply operations within route 3 

S_ID* S_ID1 Type2 From3 To4 LOAD5 CLO6 TFRAME7 TSCHED8 ECT9 ECH10 EC11 

S_00 C_00 - - - 100 178  4:13:51   66.6 66.6 

S_01 C_12 UNLO - C_13 8 186 04:15:00-04:17:00 4:15:25 74.1 6.8 147.5 

S_02 C_07 LO C_00 - 34 152 04:15:00-04:17:00 4:16:38 51.6 29.0 228.2 

S_03 C_13 LO C_12 - 8 144 04:15:00-04:20:00 4:18:11 63.3 6.8 298.3 

S_04 C_13 UNLO - C_08 14 158 04:16:00-04:20:00 4:18:43 0.0 12.0 310.2 

S_05 C_07 UNLO - C_11 7 165 04:18:00-04:21:00 4:20:07 54.8 6.0 371.0 

S_06 C_08 LO C_13 - 14 151 04:19:00-04:22:00 4:21:27 53.4 12.0 436.4 

S_07 C_03 LO C_00 - 18 133 04:21:00-04:24:00 4:23:18 80.3 15.4 532.1 

S_08 C_04 UNLO - C_00 5 138 04:22:00-04:25:00 4:24:17 24.6 4.3 561.0 

S_09 C_05 UNLO 0 C_15 21 159 04:20:00-04:30:00 4:25:30 38.3 17.9 617.2 

S_10 C_10 UNLO - C_00 7 166 04:24:00-04:30:00 4:27:14 77.2 6.0 700.4 

S_11 C_11 LO C_07 - 7 159 04:24:00-04:30:00 4:29:05 88.3 6.0 794.7 

S_12 C_11 UNLO - C_00 36 195 04:27:00-04:30:00 4:29:37 0.0 30.7 825.4 

S_13 C_17 LO C_00 - 16 179 04:27:00-04:33:00 4:30:40 40.6 13.7 879.6 

S_14 C_17 UN - C_00 2 181 04:28:00-04:33:00 4:31:12 0.0 1.7 881.4 

S_15 C_16 LO C_00 - 10 171 04:28:00-04:33:00 4:32:15 37.7 8.5 927.6 

S_16 C_16 UNLO - C_14 20 191 04:30:00-04:33:00 4:32:47 0.0 17.1 944.6 

S_17 C_15 LO C_05 - 21 170 04:22:00-04:35:00 4:34:30 92.8 17.9 1055.3 

S_18 C_14 LO C_16 - 20 150 04:30:00-04:37:00 4:36:32 102.2 17.1 1174.6 

S_19 C_00 - - - 0 150  4:39:41 159.6 42.7 1376.9 

The loading of milk-run trolleys in the case of scenario 2 is shown in Figure 65. As the figure 

demonstrates, the integrated real-time optimization of MES-generated supply demands and real-time 

demands was successful, because not only the time window for each supply demand was taken into 

consideration but also the predefined loading capacity of milk-trolleys was not exceeded. 

 
Figure 65: The optimized loading capacity of the three milk-run trolleys 
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The cumulative energy consumption of the three routes is shown in Figure 66. The total energy 

consumption was computed for 100 routes. The total energy consumption including transportation 

and material handling operations was 1448.7 kW for the first route, 1129.3 kW for the second route, 

and 1376.9 kW for the third route, which means a total energy consumption of 3954.9 kW out of 

which 3051.4 kW is for transportation and 903.5 kW is for loading and unloading of components. 

The loading and unloading operations include all material handling operations both in the warehouse 

and at the stop stations of the milk-run trolleys. 

 
Figure 66: The optimized loading capacity of the three milk-run trolleys 

5.6. Results discussion and conclusions  

Based on the above-mentioned scenarios, it is possible to compare the results of conventional and 

Industry 4.0 technologies-based real-time optimization of in-plant supply. As Table 42 shows, the 

average length of the required route per supply demand was 89.27 m/demand in the case of 

conventional optimization, while it was 33.19 m/demand in the case of real-time optimization. This 

transportation length reduction leads to a significant energy consumption reduction, which means, 

that the average energy consumption per supply demand was 1.46 kW/demand in the case of 

conventional optimization, and 0.81 kW/demand in the case of real-time optimization. These both 

parameters can be analyzed for weight units. The average length of the required route per weight unit 

was in the case of conventional routing 5.47 m/kg, while in the case of real-time optimization 2.17 

m/kg. The average energy consumption per weight unit was 0.089 kW/kg in the case of conventional 

supply optimization and 0.053 kW/kg in the case of real-time routing. The average idle capacity was 

72 kg in the case of conventional optimization, and 45 kg in the case of real-time optimization. The 

capacity utilization of the milk-run trolleys was in the case of conventional routing 28.4% while in 

the case of real-time routing 54.2%. An important constraint of in-plant supply optimization is the 

time-related constraint, which defines, that it is allowed to exceed the given time window for each 

supply demands I have analyzed the average deviance of actual the supply time from the average of 

the lower and upper limit of each time window. This average deviation was in the case of conventional 

optimization 88 sec, while in the case of real-time routing 52 sec. The same result is shown by the 

comparison of total deviances, which is in the case of conventional optimization 48 min, while in the 

case of real-time optimization 43 min. 

Table 42: Comparison of the computational results  

R_ID1 ALRpD2 AECpD3 ALRpWU4 AECpWU5 AICpR6 CUT7 ADfTW8 TTfTW9 

Scenario 1 

Route 1 52.81 118.9 2.49 5.61 53 46.8% 00:00:51 00:09:25 

Route 2 25.08 57.97 2.70 6.25 54 46.2% 00:00:40 00:11:57 

Route 3 27.87 69.87 2.18 5.46 48 52.0% 00:00:43 00:10:50 

Route 4 186.85 255.45 15.57 21.29 96 4.0% 00:00:50 00:01:40 

Route 5 138.75 202.25 5.78 8.43 92 8.0% 00:02:36 00:05:13 

Route 6 104.23 175.43 4.11 6.93 86 13.8% 00:03:09 00:09:28 

Total 89.27 146.65 5.47 8.99 72 28.4% 00:01:28 00:48:33 
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Scenario 2 

Route 1 47.82 111.44 2.42 5.64 48 51.4% 00:00:51 00:11:06 

Route 2 23.5 56.47 2.19 5.25 53 46.5% 00:00:42 00:13:59 

Route 3 28.27 76.49 1.90 5.14 35 64.5% 00:01:02 00:18:36 

Total  33.19 81.47 2.17 5.34 45 54.2% 00:00:52 00:43:42 
1 R_ID=Route ID. 2 ALRpD=Average length of the required route per supply demand. 3 AECpD=Average energy 

consumption per supply demand. 4 ALRpWU=Average length of the required route per weight unit. 5 AECpWU=Average 

energy consumption per weight unit. 6 AICpR=Average idle capacity per route. 7 CUT=Capacity utilization of the milk-

run trolley. 8 ADfTW=Average deviance from the average of the predefined time window. 9 TTfTW=Total deviance from 

the average of the predefined time window. 

The presented new approach was supported by presenting detailed mathematical modeling. For 

having a reference function that can be compared to the new optimization model, an objective 

function of conventional milk-run-based in-plant supply optimization was presented. It depended on 

the routing and scheduling of the milk-run trolleys. All the models and related capacities and 

constraints were described in detail. After that, the objective function of Industry 4.0 supported milk-

run-based in-plant supply optimization was presented in detail as well. A numerical analysis was done 

to compare the results of the two scenarios for various routes. The loading and unloading operations 

included the material handling operations both in the warehouse and at the stop stations of the milk-

run trolleys. 

As the comparison of the results showed, the average length of the required route per supply demand 

was 89.27 m/demand in the case of conventional optimization, while it was 33.19 m/demand in the 

case of real-time optimization. This reflects 62.8% route length saving. On other hand, the average 

energy consumption per supply demand was 1.46 kW/demand in the case of conventional 

optimization, and 0.81 kW/demand in the case of real-time optimization. This reflects 44.5% energy 

saving. Also, the average energy consumption per weight unit was 0.089 kW/kg in the case of 

conventional supply optimization and 0.053 kW/kg in the case of real-time routing. This reflects 

40.4% energy saving that goes along with the previous study [66] that showed how the optimization 

model helped to minimize the travel distance and along with other studies [207], [62], and [67] where 

using Industry 4.0 optimization and milk run routes showed raising the energy efficiency for 

manufacturing systems in the automotive industry. Also, this supports the previous studies [S11], and 

[68] that showed a positive impact of Industry 4.0 technologies on the scheduling processes in 

manufacturing systems. Moreover, the average idle capacity was 72 kg in the case of conventional 

optimization and 45 kg in the case of real-time optimization. The capacity utilization of the milk-run 

trolleys was in the case of conventional routing 28.4% while in the case of real-time routing 54.2%. 

While this supports the previous study [66] that showed how the presented optimization in 

maximizing the vehicle capacities, it helps to clarify the not clear results of other studies like [64] that 

showed counterproductive outcomes. 

The comparison of the conventional and real-time optimization showed that the application of 

Industry 4.0 technologies can significantly increase the efficiency of in-plant supply as well as energy 

efficiency. This is attributed to the usage of the digital twin in the first place where prolonged and 

failure processes are avoidable. The results encourage this adoption and urge further steps of applying 

it in the routing and scheduling processes. Especially using the milk-run trolleys that showed a big 

advantage as one of the tools that support Industry 4.0 technologies engagement. The described model 

makes it possible to compare the impact of the application of Industry 4.0 technologies on the 

operation parameters of routing and scheduling of milk-run trolleys in a manufacturing plant. It 

focuses on the mathematical description of conventional and real-time optimization of in-plant supply 

processes, where in the case of conventional solution the MES data-based and real-time supply 

demands are scheduled in a conventional way, while in the case of real-time optimization MES 

generated and real-time demands are taken into consideration using digital twin technology, dynamic 

simulation models and real-time optimization. The results showed a high advantage for the Industry 

4.0 technologies-based real-time optimization of in-plant supply above the conventional one. This 
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encourages and validates the adoption of the Industry 4.0 technologies in the in-plant supply operation 

and manufacturing generally. 

The added value is in the description of the impact of the application of Industry 4.0 technologies on 

the energy efficiency and performance of milk-run-based in-plant supply, while time, capacity, 

sequencing, and energy-related constraints are taken into consideration. The scientific contribution is 

the mathematical modeling of routing and scheduling problems for conventional and real-time 

optimization. The results can be generalized because the model can be applied to different milk-run-

based services (e.g., optimization of parcel delivery services). Managerial decisions can be influenced 

by the results of this research because the described method makes it possible to analyze available 

solutions for routing and scheduling of milk-run-based in-plant supply and find a suitable application 

of Industry 4.0 technologies to convert the conventional solution into a CPS, which can lead to 

potential real-time optimization. The scientific result of this research work is the mathematical 

description of conventional and Industry 4.0 technologies supported by real-time in-plant supply. The 

mathematical model makes it possible to compare both solutions while optimizing the in-plant supply 

focusing on real-time generated supply demands. However, there are also limitations, which provides 

direction for further research. Within the frame of the mentioned model, the supply demands were 

taken into consideration as deterministic parameters, but it is possible to analyze in-plant supply in 

the case of stochastic parameters, where uncertainties can be taken into consideration using fuzzy 

models. Also, the model can be extended to a more complex model including other environmental 

aspects. Industry 4.0 technologies are generally expensive technologies; therefore, another direction 

is the optimization of the investment cost of using Industry 4.0 technologies, where not only the 

investment but also the operational costs can be analyzed. 

The obtained results can be used in the future as input parameters for a digital twin-based dynamic 

simulation, where the status of the manufacturing and related logistics system can be continuously 

updated to have a state-of-the-art model of the real-world system. Furthermore, the obtained results 

can also be used for managerial decisions regarding the investment of Industry 4.0 technologies, 

sizing of milk-run trolley pool, and strategic design of routing. The applied approach included an 

evaluation methodology, which made it possible to analyze and compare the energy efficiency and 

logistics performance of conventional and Industry 4.0 technologies supported by milk-run-bases in-

plant supply solutions in the case of real-time generated supply demands. The results of the numerical 

analysis of case studies showed that the deployment of Industry 4.0 technologies can lead to increased 

energy efficiency which has a great impact on the efficiency of the whole manufacturing system. 

This chapter included the main contribution to Thesis 5.   

Thesis 5: Investigating the Industry 4.0 technologies adoption effect on CE. A research collaboration 

with the Technical University of Kosice facilitated access an important data from the European 

Manufacturing Survey (EMS) project. An innovative way was used to analyze and discuss this impact 

by using many tools including statistical ones. Furthermore, energy consumption optimization of 

milk-run-based in-plant supply solution was presented. The found system was described and detailed. 

A novel mathematical model, which made it possible to integrate the MES data-based and real-time 

generated supply demands to decrease the energy consumption and virtual GHG emission of milk-

run trolleys. An optimization numerical analysis was used to compare the results and validate the 

model. [S11, S13].                    
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6. THESES OF THE DISSERTATION  

The main new scientific contributions of the dissertation can be summarized as follows: 

 

Thesis 1: Building a comprehensive systematic literature review that presented, analyzed, and 

summarized the impact of Industry 4.0 in logistics systems in the light of sustainability and green 

environment. The literature was based on a developed mixed systemic methodology. The presented 

literature tackled the development and differences of optimization algorithms as they take an essential 

role in solving complex problems. Therefore, benchmark tests were used to compare and analyze the 

most used four algorithms' performance. The comparison was on two bases; the optimized average 

cost achieved by the algorithms and the average consumed time for code execution. Also, an upgrade 

for GA was presented with an explanation of the used coding system. Furthermore, a case study was 

solved using the described upgraded GA. [S1, S3, S4, S5, S10, S12]. 

 

Thesis 2: After an analysis was done based on real data for waste management in Europe generally 

and Hungary specifically, a proposed CPS for waste collection was presented with details about its 

parts and processes from the logistics point of view. As there is no available one found, a conventional 

city logistics solution was presented and described with its mathematical modeling to have it as a 

reference baseline. Then, a multi-echelon collection and distribution optimization system was 

described and detailed. A numerical analysis was used to compare the two systems and clarify their 

effectiveness. The optimization aimed at scheduling, assignment, routing layout design, and 

controlling tasks that focus on time, distance, energy consumption, and emission-related objective 

functions. Also, it focused on an e-vehicle-based solution, where the efficiency of the whole system 

could be increased by using existing Industry 4.0 technologies, like smart devices, radiofrequency 

identification, digital twin solutions, and cloud and fog computing to solve big data problems of large-

scale system including a wide range of users, transportation resources and goods. [S7, S8, S9]. 

 

Thesis 3: CPS for waste management focusing on energy efficiency and sustainability was presented 

and discussed. The developed mathematical modeling was described. Also, a case study in the VIII 

district in Budapest was used to validate the system for two scenarios of thirty and twenty smart bins. 

The designed system encompassed the following aspects: IoT, smart bins with multi-percentage 

sensors, data and information analysis, vehicles’ actual routes, energy and emissions optimization, 

multi-echelon system, time windows, and flexibility. The system’s flexibility was demonstrated 

through the dynamic nature of the collection and transfer station's tasks based on the given situation. 

[S2, S4, S6]. 

 

Thesis 4: Presenting three case studies. The first one was in the Miskolc city center where the VRP 

problem was optimized by three algorithms next to a random route that is used as a comparison 

reference. The second one was in Kosice city center to validate a capacitive collection system using 

five algorithms. The adopted IoT tools allowed applying the constraints of vehicle maximum limit of 

goods, total collected goods for each vehicle, vehicles' flexibility, one/two ways consideration, and 

real routes' distances calculation. According to the results, GA is the advised algorithm to use, because 

it showed stable optimization effectiveness in both applications in contrast to the other algorithms. 

Furthermore, a last-mile supply optimization system within urban areas focusing on RL consideration 

was presented and described. The designed system incorporated cloud computing, real routes of 

vehicles, analysis of collected data, energy consumption optimization, and time windows. Also, a 

mathematical model was developed to optimize the total energy consumption. Real thirty locations 

in Budapest in the VII district were described and used for the third case study for finding the solutions 

of the optimized routes and energy consumption by GA for both diesel and electric trucks. The results 
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were analyzed and compared against a random solution to clarify the presented optimization's 

effectiveness. [S4, S5, S10].  

 

Thesis 5: Investigating the Industry 4.0 technologies adoption effect on CE. A research collaboration 

with the Technical University of Kosice facilitated access an important data from the European 

Manufacturing Survey (EMS) project. An innovative way was used to analyze and discuss this impact 

by using many tools including statistical ones. Furthermore, energy consumption optimization of 

milk-run-based in-plant supply solution was presented. The found system was described and detailed. 

A novel mathematical model, which made it possible to integrate the MES data-based and real-time 

generated supply demands to decrease the energy consumption and virtual GHG emission of milk-

run trolleys. An optimization numerical analysis was used to compare the results and validate the 

model. [S11, S13].                     
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